Optimizing the planning process in computed tomography-based image-guided adaptive brachytherapy for cervical cancer using a spreadsheet-based daily dose management system.
{"title":"Optimizing the planning process in computed tomography-based image-guided adaptive brachytherapy for cervical cancer using a spreadsheet-based daily dose management system.","authors":"Jun Takatsu, Takahito Chiba, Naoya Murakami, Kotaro Iijima, Tatsuya Inoue, Noriyuki Okonogi, Yoichi Muramoto, Terufumi Kawamoto, Tatsuki Karino, Hiroyuki Okamoto, Satoshi Nakamura, Hiroki Nakayama, Yasuhisa Terao, Naoto Shikama","doi":"10.1007/s12194-024-00867-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed a system to reduce the treatment planning time for cervical cancer brachytherapy. An in-house Excel spreadsheet was developed to streamline dosimetric evaluation by combining external beam radiotherapy and brachytherapy doses, while also displaying daily dose constraints, a novel feature of the system. This system was validated in 46 consecutive patients who underwent intracavitary and interstitial brachytherapy using several applicators and required more complex dose calculation procedures than intracavitary brachytherapy alone. The proposed system included contouring and catheter reconstruction using multiple treatment planning systems simultaneously and was integrated with Excel spreadsheets for rapid dosimetric evaluation. The median time required for treatment planning was 36 min (range: 12-72 min), which was a much shorter time than those reported previously. This optimized system demonstrated the potential to increase the efficiency of brachytherapy planning to meet prescribed dose constraints without compromising treatment quality.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00867-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
This study developed a system to reduce the treatment planning time for cervical cancer brachytherapy. An in-house Excel spreadsheet was developed to streamline dosimetric evaluation by combining external beam radiotherapy and brachytherapy doses, while also displaying daily dose constraints, a novel feature of the system. This system was validated in 46 consecutive patients who underwent intracavitary and interstitial brachytherapy using several applicators and required more complex dose calculation procedures than intracavitary brachytherapy alone. The proposed system included contouring and catheter reconstruction using multiple treatment planning systems simultaneously and was integrated with Excel spreadsheets for rapid dosimetric evaluation. The median time required for treatment planning was 36 min (range: 12-72 min), which was a much shorter time than those reported previously. This optimized system demonstrated the potential to increase the efficiency of brachytherapy planning to meet prescribed dose constraints without compromising treatment quality.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.