On a model of evolution of subspecies.

IF 2.2 4区 数学 Q2 BIOLOGY Journal of Mathematical Biology Pub Date : 2024-12-06 DOI:10.1007/s00285-024-02165-x
Rahul Roy, Hideki Tanemura
{"title":"On a model of evolution of subspecies.","authors":"Rahul Roy, Hideki Tanemura","doi":"10.1007/s00285-024-02165-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ben-Ari and Schinazi (J Stat Phys 162:415-425, 2016) introduced a stochastic model to study 'virus-like evolving population with high mutation rate'. This model is a birth and death model with an individual at birth being either a mutant with a random fitness parameter in [0, 1] or having one of the existing fitness parameters with uniform probability; whereas a death event removes the entire population of the least fitness. We change this to incorporate the notion of 'survival of the fittest', by requiring that a non-mutant individual, at birth, has a fitness according to a preferential attachment mechanism, i.e., it has a fitness f with a probability proportional to the size of the population of fitness f. Also death just removes one individual with the least fitness. This preferential attachment rule leads to a power law behaviour in the asymptotics, unlike the exponential behaviour obtained by Ben-Ari and Schinazi (J Stat Phys 162:415-425, 2016).</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 1","pages":"3"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02165-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ben-Ari and Schinazi (J Stat Phys 162:415-425, 2016) introduced a stochastic model to study 'virus-like evolving population with high mutation rate'. This model is a birth and death model with an individual at birth being either a mutant with a random fitness parameter in [0, 1] or having one of the existing fitness parameters with uniform probability; whereas a death event removes the entire population of the least fitness. We change this to incorporate the notion of 'survival of the fittest', by requiring that a non-mutant individual, at birth, has a fitness according to a preferential attachment mechanism, i.e., it has a fitness f with a probability proportional to the size of the population of fitness f. Also death just removes one individual with the least fitness. This preferential attachment rule leads to a power law behaviour in the asymptotics, unlike the exponential behaviour obtained by Ben-Ari and Schinazi (J Stat Phys 162:415-425, 2016).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在亚种进化的模型上。
Ben-Ari和Schinazi (J Stat Phys 162:415-425, 2016)引入了一个随机模型来研究“具有高突变率的病毒样进化种群”。该模型是一个生灭模型,其中个体在出生时要么是具有随机适应度参数在[0,1]中的突变体,要么具有均匀概率的现有适应度参数之一;而死亡事件会移除适应度最低的整个种群。我们将其改变为“适者生存”的概念,通过要求非突变个体在出生时具有根据优先依恋机制的适应度,即它的适应度f的概率与适应度f的种群大小成正比。同样,死亡只是移除一个适应度最低的个体。与Ben-Ari和Schinazi (J Stat Phys 162:415-425, 2016)获得的指数行为不同,这种优先依恋规则导致了渐近的幂律行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
期刊最新文献
Multi-objective control to schedule therapies for acute viral infections. Dynamics analysis of a reaction-diffusion-advection benthic-drift model with logistic growth. Asymptotic behavior of the basic reproduction number for periodic nonlocal dispersal operators and applications. A network aggregation model for amyloid- β dynamics and treatment of Alzheimer's diseases at the brain scale. A branching model for intergenerational telomere length dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1