Characterizing binary droplet collisions of power-law fluids

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-12-06 DOI:10.1002/aic.18667
Arie H. Huijgen, P. M. Durubal, Cristina García Llamas, Kay A. Buist, J. A. M. (Hans) Kuipers, Maike W. Baltussen
{"title":"Characterizing binary droplet collisions of power-law fluids","authors":"Arie H. Huijgen, P. M. Durubal, Cristina García Llamas, Kay A. Buist, J. A. M. (Hans) Kuipers, Maike W. Baltussen","doi":"10.1002/aic.18667","DOIUrl":null,"url":null,"abstract":"This study focuses on the dynamics of two equal-sized droplets of non-Newtonian liquids with simulations using the volume of fluid method and the local front reconstruction method. The non-Newtonian behavior is implement via a power-law model. The droplet interactions are performed for Weber numbers ranging from 20 to 300 and impact parameters from 0 to 0.6. Both methods produce similar results at low Weber numbers, while the disintegration of the droplets at high Weber numbers occurs via different mechanisms. Our results demonstrate that the boundaries of the collision maps are highly dependent on the power-law index. Additionally, the diameter of the ring for head-on collisions is increased with increasing Weber number and decreasing power-law index, while the critical ligament length in off-center collisions increases with Weber number and power-law index.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"27 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18667","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the dynamics of two equal-sized droplets of non-Newtonian liquids with simulations using the volume of fluid method and the local front reconstruction method. The non-Newtonian behavior is implement via a power-law model. The droplet interactions are performed for Weber numbers ranging from 20 to 300 and impact parameters from 0 to 0.6. Both methods produce similar results at low Weber numbers, while the disintegration of the droplets at high Weber numbers occurs via different mechanisms. Our results demonstrate that the boundaries of the collision maps are highly dependent on the power-law index. Additionally, the diameter of the ring for head-on collisions is increased with increasing Weber number and decreasing power-law index, while the critical ligament length in off-center collisions increases with Weber number and power-law index.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
幂律流体二元液滴碰撞的表征
本文采用流体体积法和局部锋面重建法对非牛顿流体中两个等大小液滴的动力学进行了模拟。非牛顿行为是通过幂律模型实现的。在韦伯数为20 ~ 300、冲击参数为0 ~ 0.6的条件下,进行了液滴相互作用。两种方法在低韦伯数时产生相似的结果,而在高韦伯数时液滴的分解通过不同的机制发生。我们的结果表明,碰撞图的边界高度依赖于幂律指数。正碰撞环直径随Weber数的增加和幂律指数的减小而增大,偏离中心碰撞环的临界韧带长度随Weber数和幂律指数的增加而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
New strategy for predicting liquid–liquid equilibrium near critical point using global renormalization group theory Integration of Pt/Fe-silicalite-1 and acidic zeolite as a bifunctional catalyst for boosting ethane dehydroaromatization Magnetic particle capture in high-gradient magnetic separation: A theoretical and experimental study Synergistic plasmon resonance hybridization of iron-dispersed MoO3−x/MXene for enhanced nitrogen photothermal reduction Machine learning potential model for accelerating quantum chemistry-driven property prediction and molecular design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1