High-speed blood flow measurement based on a continuous laser-assisted nonlinear photoacoustic

IF 1.1 4区 物理与天体物理 Q4 OPTICS Optical Review Pub Date : 2024-12-06 DOI:10.1007/s10043-024-00935-y
Ziyi Ke, Qixin Liu, Minglong Hu, Junjie Zhou, Shilin Ren, Yingchun Ding, Liang Yin
{"title":"High-speed blood flow measurement based on a continuous laser-assisted nonlinear photoacoustic","authors":"Ziyi Ke, Qixin Liu, Minglong Hu, Junjie Zhou, Shilin Ren, Yingchun Ding, Liang Yin","doi":"10.1007/s10043-024-00935-y","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear photoacoustic-based methods for measuring high-speed blood flow velocity typically use a single-pulse laser or a dual-pulse laser system with high repetition rate to achieve thermal tagging and acoustic excitation at the same time. However, the peak power of the pulsed laser is too high and can easily exceed the damage threshold, causing the blood to be overheated, which limits the application of this method in living tissue. In this paper, we propose and confirm a method of detecting high-speed blood flow with a low-power continuous laser-assisted nonlinear photoacoustic. We first establish a model of the relationship between the attenuation of Gruneisen parameters and velocity. Based on this, we further develop a theoretical relationship between the change of photoacoustic signal and the blood velocity. Then we used a low-power continuous laser for thermal tagging and a low repetition rate of pulsed laser to excite photoacoustic signals in the experiment. After calibration, the results show that the velocity measured by this method is in good agreement with the actual velocity and the highest flow velocity can be measured was 100 mm/s under our experimental conditions.</p>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"27 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10043-024-00935-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear photoacoustic-based methods for measuring high-speed blood flow velocity typically use a single-pulse laser or a dual-pulse laser system with high repetition rate to achieve thermal tagging and acoustic excitation at the same time. However, the peak power of the pulsed laser is too high and can easily exceed the damage threshold, causing the blood to be overheated, which limits the application of this method in living tissue. In this paper, we propose and confirm a method of detecting high-speed blood flow with a low-power continuous laser-assisted nonlinear photoacoustic. We first establish a model of the relationship between the attenuation of Gruneisen parameters and velocity. Based on this, we further develop a theoretical relationship between the change of photoacoustic signal and the blood velocity. Then we used a low-power continuous laser for thermal tagging and a low repetition rate of pulsed laser to excite photoacoustic signals in the experiment. After calibration, the results show that the velocity measured by this method is in good agreement with the actual velocity and the highest flow velocity can be measured was 100 mm/s under our experimental conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Review
Optical Review 物理-光学
CiteScore
2.30
自引率
0.00%
发文量
62
审稿时长
2 months
期刊介绍: Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is: General and physical optics; Quantum optics and spectroscopy; Information optics; Photonics and optoelectronics; Biomedical photonics and biological optics; Lasers; Nonlinear optics; Optical systems and technologies; Optical materials and manufacturing technologies; Vision; Infrared and short wavelength optics; Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies; Other optical methods and applications.
期刊最新文献
Simulation on temperature rise using ring-resonator-type device for heat-assisted magnetic recording Viewing zone of aerial hollow face illusion evoked by use a 3D object as a light source for AIRR optical system High-speed blood flow measurement based on a continuous laser-assisted nonlinear photoacoustic A microring resonator full-duplex 5 × 5 optical routing switch based on ITO material An efficient evaluation model of fusion splice with different transverse offset and angular misalignment for few mode fiber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1