Evaluation of RGB-D Image for Counting Exposed Aggregate Number on Pavement Surface Based on Computer Vision Technique

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2024-12-07 DOI:10.1007/s10921-024-01144-y
Lyhour Chhay, Young Kyu Kim, Seung Woo Lee
{"title":"Evaluation of RGB-D Image for Counting Exposed Aggregate Number on Pavement Surface Based on Computer Vision Technique","authors":"Lyhour Chhay,&nbsp;Young Kyu Kim,&nbsp;Seung Woo Lee","doi":"10.1007/s10921-024-01144-y","DOIUrl":null,"url":null,"abstract":"<div><p>Functional performance of Expose Aggregate Concrete Pavement (EACP) such low tire-pavement noise and higher skid resistance are noticeable due to long-term durability, are influenced by wavelength and mean texture depth (MTD). EACP surface macrotexture is characterized by the MTD and exposed aggregate number (EAN) due to a higher correlation between wavelength and the EAN. Normally, the EAN is manually estimated which needs much human effort and is time-consuming. Recently, deep learning of computer vision has been employed for aiding human counting tasks in different condition. Mostly, many state-of-the-arts for counting are conducted by using RGB image which is color image. Regarding the counting techniques used for EAN, it is a challenging task to deal with some issues such as aggregate is some occluded and similar coloring to the background. Because the aggregate shows the peak characteristic, the depth value may benefit in improving the recognition. This additional information may be useful since it can be display distinguishable color between the object and background. Therefore, this study aims to evaluate the combination of RGB image and depth information, knowns as RGB-D image, for counting the EAN by adapted Faster RCNN deep learning model with four channel input images. The RGB-D dataset was newly constructed for training and testing implemented model. The result shows the accuracy slightly improve by 5% by using RGB-D compared to RGB. However, they both achieve similar MAE and RMSE. Therefore, it gives the valuable information for EAN counting. Both image datasets are acceptable for counting the EAN with a given condition.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01144-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Functional performance of Expose Aggregate Concrete Pavement (EACP) such low tire-pavement noise and higher skid resistance are noticeable due to long-term durability, are influenced by wavelength and mean texture depth (MTD). EACP surface macrotexture is characterized by the MTD and exposed aggregate number (EAN) due to a higher correlation between wavelength and the EAN. Normally, the EAN is manually estimated which needs much human effort and is time-consuming. Recently, deep learning of computer vision has been employed for aiding human counting tasks in different condition. Mostly, many state-of-the-arts for counting are conducted by using RGB image which is color image. Regarding the counting techniques used for EAN, it is a challenging task to deal with some issues such as aggregate is some occluded and similar coloring to the background. Because the aggregate shows the peak characteristic, the depth value may benefit in improving the recognition. This additional information may be useful since it can be display distinguishable color between the object and background. Therefore, this study aims to evaluate the combination of RGB image and depth information, knowns as RGB-D image, for counting the EAN by adapted Faster RCNN deep learning model with four channel input images. The RGB-D dataset was newly constructed for training and testing implemented model. The result shows the accuracy slightly improve by 5% by using RGB-D compared to RGB. However, they both achieve similar MAE and RMSE. Therefore, it gives the valuable information for EAN counting. Both image datasets are acceptable for counting the EAN with a given condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Non-Destructive Measurement of Chloride Profiles in Cementitious Materials Using NMR Degradation Detection in Rice Products via Shape Variations in XCT Simulation-Empowered AI Evaluation of RGB-D Image for Counting Exposed Aggregate Number on Pavement Surface Based on Computer Vision Technique Integrated Optical Coherence Tomography and Hyperspectral Imaging for Automated Structural Health Monitoring of Carbon Fibre Aircraft Structures Statistical and Machine Learning-Based Imaging with Long Pulse Thermography for the Detection of Non-standardised Defects in CFRP Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1