Natural cellulose fibers (Agave Americana L. ASPARAGACEAE) impregnated with magnetite nanoparticles as a novel adsorbent of mercury (Hg) in aqueous solutions

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-12-07 DOI:10.1007/s10450-024-00577-1
Hugo Sánchez-Moreno, Lourdes García-Rodríguez, Celso Recalde-Moreno
{"title":"Natural cellulose fibers (Agave Americana L. ASPARAGACEAE) impregnated with magnetite nanoparticles as a novel adsorbent of mercury (Hg) in aqueous solutions","authors":"Hugo Sánchez-Moreno,&nbsp;Lourdes García-Rodríguez,&nbsp;Celso Recalde-Moreno","doi":"10.1007/s10450-024-00577-1","DOIUrl":null,"url":null,"abstract":"<div><p>High mercury levels from industrial and natural sources necessitate effective water mercury removal methods owing to human and ecosystem toxicity risks. This study addresses the adsorption of Hg ions onto mixed-valent magnetite nanoparticles (MNPs) owing to their high surface area, reactivity, and magnetic recovery ability. The adsorption capacity of MNPs is influenced by the morphological characteristics. The influence of the vegetable fiber surface charge in magnetite, along with the change in pH, on the Hg ion adsorption process by MNPs remains an open question. The adsorption capacities of the synthesized MNPs and Cabuya fibers (Agave Americana L. ASPARAGACEAE) impregnated with magnetite nanoparticles (FC-MNPs) were compared. The synthesis and impregnation of MNps were performed using the chemical coprecipitation method with ferrous and ferric chloride as precursor solutions. The composition, surface properties, and morphology of the synthesized adsorbents were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive X-ray spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and Raman spectroscopy (RS), which provided evidence that MNps reached an approximate diameter of 19 nm. Both adsorbents were used for the removal of Hg (II) at different initial pH values, times, temperatures, adsorbent dosages, and analyte concentrations. FC-MNPs and MNPs were able to achieve approximately 93% and 83% Hg (II) removal, respectively, under the following experimental conditions: the adsorbent dose 0.5 g, Hg (II) 10 mg/L, pH 5.0, stirring speed of 150 rpm, temperature of 25 °C, and equilibrium time of 4 h. Equilibrium data were evaluated by fitting the Langmuir and Freundlich isotherm models to the experimental conditions. Additionally, kinetic studies of pseudo-first and pseudo-second order were conducted to understand the mechanism of interaction between the adsorbent and the metal ions. The results show that FC-MNPs has a maximum adsorption capacity of Hg(II) of 4.95 mg/g of adsorbent, and that the reaction system follows pseudo-second order kinetics and the Freundlich isotherm model. Finally, the experimental results reported in this work show that cabuya fibers impregnated with MNPs have an important impact on the immobilization of aqueous contaminants. This offers a new method for developing novel nanocomposite adsorbents for the removal of metallic ions from wastewater.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00577-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High mercury levels from industrial and natural sources necessitate effective water mercury removal methods owing to human and ecosystem toxicity risks. This study addresses the adsorption of Hg ions onto mixed-valent magnetite nanoparticles (MNPs) owing to their high surface area, reactivity, and magnetic recovery ability. The adsorption capacity of MNPs is influenced by the morphological characteristics. The influence of the vegetable fiber surface charge in magnetite, along with the change in pH, on the Hg ion adsorption process by MNPs remains an open question. The adsorption capacities of the synthesized MNPs and Cabuya fibers (Agave Americana L. ASPARAGACEAE) impregnated with magnetite nanoparticles (FC-MNPs) were compared. The synthesis and impregnation of MNps were performed using the chemical coprecipitation method with ferrous and ferric chloride as precursor solutions. The composition, surface properties, and morphology of the synthesized adsorbents were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive X-ray spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and Raman spectroscopy (RS), which provided evidence that MNps reached an approximate diameter of 19 nm. Both adsorbents were used for the removal of Hg (II) at different initial pH values, times, temperatures, adsorbent dosages, and analyte concentrations. FC-MNPs and MNPs were able to achieve approximately 93% and 83% Hg (II) removal, respectively, under the following experimental conditions: the adsorbent dose 0.5 g, Hg (II) 10 mg/L, pH 5.0, stirring speed of 150 rpm, temperature of 25 °C, and equilibrium time of 4 h. Equilibrium data were evaluated by fitting the Langmuir and Freundlich isotherm models to the experimental conditions. Additionally, kinetic studies of pseudo-first and pseudo-second order were conducted to understand the mechanism of interaction between the adsorbent and the metal ions. The results show that FC-MNPs has a maximum adsorption capacity of Hg(II) of 4.95 mg/g of adsorbent, and that the reaction system follows pseudo-second order kinetics and the Freundlich isotherm model. Finally, the experimental results reported in this work show that cabuya fibers impregnated with MNPs have an important impact on the immobilization of aqueous contaminants. This offers a new method for developing novel nanocomposite adsorbents for the removal of metallic ions from wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然纤维素纤维(龙舌兰美洲L.天冬酰胺科)浸染的磁铁矿纳米颗粒作为一种新的汞(Hg)吸附剂在水溶液中
由于人类和生态系统的毒性风险,工业和自然来源的高汞含量需要有效的水汞去除方法。由于混合价磁铁矿纳米颗粒(MNPs)具有高表面积、反应活性和磁回收能力,因此本研究解决了汞离子在MNPs上的吸附问题。MNPs的吸附能力受其形态特征的影响。植物纤维在磁铁矿中的表面电荷以及pH的变化对MNPs吸附Hg离子过程的影响仍然是一个悬而未决的问题。比较了合成的MNPs与Cabuya纤维(Agave Americana L. ASPARAGACEAE)浸渍的磁铁矿纳米颗粒(FC-MNPs)的吸附性能。以氯化亚铁和三铁为前驱体,采用化学共沉淀法合成和浸渍MNps。利用扫描电子显微镜(SEM)、x射线能谱仪(EDS)、傅里叶红外光谱(FTIR)、透射电子显微镜(TEM)和拉曼光谱(RS)对合成的吸附剂的组成、表面性质和形貌进行了研究,结果表明MNps的直径约为19 nm。两种吸附剂在不同的初始pH值、时间、温度、吸附剂剂量和分析物浓度下用于去除Hg (II)。在吸附剂用量0.5 g, Hg (II) 10 mg/L, pH 5.0,搅拌速度150 rpm,温度25℃,平衡时间4 h的条件下,FC-MNPs和MNPs分别能达到约93%和83%的Hg (II)去除率。通过拟合Langmuir和Freundlich等温模型来评估平衡数据。此外,还进行了准一级和准二级的动力学研究,以了解吸附剂与金属离子相互作用的机理。结果表明,FC-MNPs对Hg(II)的最大吸附量为4.95 mg/g,反应体系符合拟二级动力学和Freundlich等温模型。最后,本文报道的实验结果表明,浸渍MNPs的cabuya纤维对水中污染物的固定化有重要影响。这为开发新型纳米复合吸附剂去除废水中的金属离子提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Investigation on the possibility of using the C2N semiconductor segment for adsorption and detection of some chlorofluorocarbons; a DFT survey DFT study of the adsorption behaviors of glycine, hystidine and phenylalanine amino acids on the novel Ag4 cluster modified BSe nanosheets: applications to bionanosensors Efficient calculation of the equilibrium composition in multicomponent batch adsorption with the steric mass action model Adsorption-biased characterization of porous solids Metal-loaded porous materials made from gold tailings: preparation and application in pollutants adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1