Rational Engineering of a Dynamic, Enzyme-Driven DNA Walker for Intracellular Dual-Enzyme Activity Sequentially Monitoring and Imaging.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-12-06 DOI:10.1021/acsabm.4c01296
Tingting Zhao, Yi Fang, Shuolin Qin, Wei Gong, Sheng Xu, Fan Xu, Wenxiao Wang
{"title":"Rational Engineering of a Dynamic, Enzyme-Driven DNA Walker for Intracellular Dual-Enzyme Activity Sequentially Monitoring and Imaging.","authors":"Tingting Zhao, Yi Fang, Shuolin Qin, Wei Gong, Sheng Xu, Fan Xu, Wenxiao Wang","doi":"10.1021/acsabm.4c01296","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring enzyme activity is crucial in both scientific research and clinical applications. However, abnormalities in a single enzyme's activity can indicate multiple diseases, limiting the specificity of single enzyme activity monitoring in clinical diagnosis. We developed a dynamic DNA walker that can be sequentially activated by two enzymes, enabling the monitoring and imaging of both enzyme activities within cells. Initially, the DNA walker contains a site for apurinic/apyrimidinic endonuclease 1 (APE1). Upon APE1 activation, the DNA walker forms specific structures recognized and cleaved by Flap endonuclease 1 (FEN1). The temporal disparity between the activities of APE1 and FEN1 allows for the sequential monitoring and imaging of both enzymes, reducing the likelihood of false-positive results. To enhance local concentration and decrease reaction time, the DNA walk sequence was attached to the surface of gold nanoparticles (AuNPs). The fruition of this endeavor will facilitate the investigation and advancement of multiple enzyme activity monitoring and imaging methods and technologies, while simultaneously broadening the domains of application for DNA nanotechnology.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring enzyme activity is crucial in both scientific research and clinical applications. However, abnormalities in a single enzyme's activity can indicate multiple diseases, limiting the specificity of single enzyme activity monitoring in clinical diagnosis. We developed a dynamic DNA walker that can be sequentially activated by two enzymes, enabling the monitoring and imaging of both enzyme activities within cells. Initially, the DNA walker contains a site for apurinic/apyrimidinic endonuclease 1 (APE1). Upon APE1 activation, the DNA walker forms specific structures recognized and cleaved by Flap endonuclease 1 (FEN1). The temporal disparity between the activities of APE1 and FEN1 allows for the sequential monitoring and imaging of both enzymes, reducing the likelihood of false-positive results. To enhance local concentration and decrease reaction time, the DNA walk sequence was attached to the surface of gold nanoparticles (AuNPs). The fruition of this endeavor will facilitate the investigation and advancement of multiple enzyme activity monitoring and imaging methods and technologies, while simultaneously broadening the domains of application for DNA nanotechnology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
DNA-Assisted CRISPR-Cas12a Enhanced Fluorescent Assay for Protein Detection in Complicated Matrices. Stem Cell-Laden Engineered Patch: Advances and Applications in Tissue Regeneration. Ultrasound-Activated Near-Infrared-II Afterglow Luminescence for Precise Cancer Imaging. Liposomal Encapsulation of Chlorambucil with a Terpyridine-Based, Glutathione-Targeted Optical Probe Facilitates Cell Entry and Cancer Cell Death. Ultrafast Microwave-Synthesized 2D/1D MnO2/Carbon Nanotube Hybrid for Bilirubin Detection in Simulated Blood Serum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1