Tingting Zhao, Yi Fang, Shuolin Qin, Wei Gong, Sheng Xu, Fan Xu, Wenxiao Wang
{"title":"Rational Engineering of a Dynamic, Enzyme-Driven DNA Walker for Intracellular Dual-Enzyme Activity Sequentially Monitoring and Imaging.","authors":"Tingting Zhao, Yi Fang, Shuolin Qin, Wei Gong, Sheng Xu, Fan Xu, Wenxiao Wang","doi":"10.1021/acsabm.4c01296","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring enzyme activity is crucial in both scientific research and clinical applications. However, abnormalities in a single enzyme's activity can indicate multiple diseases, limiting the specificity of single enzyme activity monitoring in clinical diagnosis. We developed a dynamic DNA walker that can be sequentially activated by two enzymes, enabling the monitoring and imaging of both enzyme activities within cells. Initially, the DNA walker contains a site for apurinic/apyrimidinic endonuclease 1 (APE1). Upon APE1 activation, the DNA walker forms specific structures recognized and cleaved by Flap endonuclease 1 (FEN1). The temporal disparity between the activities of APE1 and FEN1 allows for the sequential monitoring and imaging of both enzymes, reducing the likelihood of false-positive results. To enhance local concentration and decrease reaction time, the DNA walk sequence was attached to the surface of gold nanoparticles (AuNPs). The fruition of this endeavor will facilitate the investigation and advancement of multiple enzyme activity monitoring and imaging methods and technologies, while simultaneously broadening the domains of application for DNA nanotechnology.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring enzyme activity is crucial in both scientific research and clinical applications. However, abnormalities in a single enzyme's activity can indicate multiple diseases, limiting the specificity of single enzyme activity monitoring in clinical diagnosis. We developed a dynamic DNA walker that can be sequentially activated by two enzymes, enabling the monitoring and imaging of both enzyme activities within cells. Initially, the DNA walker contains a site for apurinic/apyrimidinic endonuclease 1 (APE1). Upon APE1 activation, the DNA walker forms specific structures recognized and cleaved by Flap endonuclease 1 (FEN1). The temporal disparity between the activities of APE1 and FEN1 allows for the sequential monitoring and imaging of both enzymes, reducing the likelihood of false-positive results. To enhance local concentration and decrease reaction time, the DNA walk sequence was attached to the surface of gold nanoparticles (AuNPs). The fruition of this endeavor will facilitate the investigation and advancement of multiple enzyme activity monitoring and imaging methods and technologies, while simultaneously broadening the domains of application for DNA nanotechnology.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.