COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2024-11-28 DOI:10.1016/j.media.2024.103396
Lixuan Chen, Xuanyu Tian, Jiangjie Wu, Guoyan Lao, Yuyao Zhang, Hongjiang Wei
{"title":"COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation","authors":"Lixuan Chen, Xuanyu Tian, Jiangjie Wu, Guoyan Lao, Yuyao Zhang, Hongjiang Wei","doi":"10.1016/j.media.2024.103396","DOIUrl":null,"url":null,"abstract":"Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: <ce:inter-ref xlink:href=\"https://github.com/maopaom/COLLATOR\" xlink:type=\"simple\">https://github.com/maopaom/COLLATOR</ce:inter-ref>.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"1 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103396","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COLLATOR:通过内隐神经表征构建一致的时空纵向地图集
纵向脑地图集是脑发育研究的重要工具,它反映了脑的长期发展趋势。然而,传统的方法是通过在离散时间点对不同个体的脑图像进行独立平均来构建这些地图集。这种方法可能由于样本之间个体发生趋势的变化而导致时间不一致,潜在地影响大脑发育特征分析的准确性。在本文中,我们提出了一个基于隐式神经表示(INR)的框架来提高纵向地图集的时间一致性。我们将时间不一致性视为一个4维(4D)图像去噪任务,其中数据由3D空间信息和1D时间进展组成。我们将纵向地图集表述为时空坐标的隐式函数,允许在时间上的结构不一致被视为随年龄变化的3D图像噪声。受最近的自监督去噪方法(例如Noise2Noise)的启发,我们的方法从不一致的纵向地图集数据中学习无噪声和时间连续的隐式函数。最后,通过对脑发育关键时间点去噪后的4D INR函数进行评估,重建时间一致的纵向脑图谱。我们在三个不同MRI模式的纵向脑图谱上评估了我们的方法,证明我们的方法显着提高了时间一致性,同时准确地保留了大脑结构。此外,我们的方法生成的连续函数可以创建具有更高时空分辨率的四维地图集。代码:https://github.com/maopaom/COLLATOR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Corrigendum to "Detection and analysis of cerebral aneurysms based on X-ray rotational angiography - the CADA 2020 challenge" [Medical Image Analysis, April 2022, Volume 77, 102333]. Editorial for Special Issue on Foundation Models for Medical Image Analysis. Few-shot medical image segmentation with high-fidelity prototypes. The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction. DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1