Radial Dependences of the Phase Composition, Nanohardness, and Young’s Modulus for Ti–2 wt % Fe Alloy after High-Pressure Torsion

IF 2 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Physical Mesomechanics Pub Date : 2024-12-08 DOI:10.1134/S1029959924060018
A. S. Gornakova, S. I. Prokofjev, N. S. Afonikova, A. I. Tyurin, A. R. Kilmametov, A. V. Korneva, B. B. Straumal
{"title":"Radial Dependences of the Phase Composition, Nanohardness, and Young’s Modulus for Ti–2 wt % Fe Alloy after High-Pressure Torsion","authors":"A. S. Gornakova,&nbsp;S. I. Prokofjev,&nbsp;N. S. Afonikova,&nbsp;A. I. Tyurin,&nbsp;A. R. Kilmametov,&nbsp;A. V. Korneva,&nbsp;B. B. Straumal","doi":"10.1134/S1029959924060018","DOIUrl":null,"url":null,"abstract":"<p>The specimens of Ti–2 wt % Fe alloy were annealed at three different temperatures, in the β-Ti, α-Ti + β-Ti and α-Ti + TiFe fields of the Ti–Fe phase diagram, then water quenched and subjected to high-pressure torsion (HPT). The X-ray diffraction analysis showed that the main phase in all annealed specimens was the α phase (more than 90%), while the main phase after HPT was the ω phase. Hardness <i>H</i> and Young’s modulus <i>E</i> were determined by nanoindentation at the center, in the middle of the radius, and near the edge of each specimen. It was found that the <i>H</i> and <i>E</i> values were different for specimens annealed at different temperatures and depended on the radial coordinate of the indentation region. The maximum <i>H</i> values were obtained in the middle of the radius of the specimens. The <i>E</i> values of all specimens decreased from the center to the edge, reaching very low values. The paper discusses structure transformations during HPT, the behavior of the radial dependences of <i>H</i> and <i>E</i>, and probable causes of a strong decrease in <i>E</i> values.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 and Elena V. Bobruk","pages":"627 - 641"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924060018","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The specimens of Ti–2 wt % Fe alloy were annealed at three different temperatures, in the β-Ti, α-Ti + β-Ti and α-Ti + TiFe fields of the Ti–Fe phase diagram, then water quenched and subjected to high-pressure torsion (HPT). The X-ray diffraction analysis showed that the main phase in all annealed specimens was the α phase (more than 90%), while the main phase after HPT was the ω phase. Hardness H and Young’s modulus E were determined by nanoindentation at the center, in the middle of the radius, and near the edge of each specimen. It was found that the H and E values were different for specimens annealed at different temperatures and depended on the radial coordinate of the indentation region. The maximum H values were obtained in the middle of the radius of the specimens. The E values of all specimens decreased from the center to the edge, reaching very low values. The paper discusses structure transformations during HPT, the behavior of the radial dependences of H and E, and probable causes of a strong decrease in E values.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ti-2 wt % Fe合金高压扭转后相组成、纳米硬度和杨氏模量的径向依赖性
将Ti-2 wt % Fe合金试样分别在Ti-Fe相图的β-Ti、α-Ti + β-Ti和α-Ti + TiFe三种不同温度下退火,然后进行水淬和高压扭转。x射线衍射分析表明,所有退火试样的主要相均为α相(占90%以上),而高温热处理后的主要相为ω相。硬度H和杨氏模量E是通过在每个试样的中心、半径中间和靠近边缘的纳米压痕来测定的。结果表明,不同温度退火试样的H和E值不同,且与压痕区域的径向坐标有关。最大H值出现在试样半径的中间。各试样的E值从中心到边缘逐渐减小,达到很低的值。本文讨论了HPT过程中的结构转变,H和E的径向依赖行为,以及E值强烈下降的可能原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
期刊最新文献
Dislocation-Based Constitutive Model: Description of the Influence of Grain Boundaries on the Deformation of Metals Variability of Effective Elastic Properties of Two-Layered Plates of Orthorhombic Crystals Hierarchy of the Metal Fatigue Mechanisms Based on the Physical Mesomechanics Methodology Transonic Edge Dislocation Problem Tension and Compression Fatigue Properties of Short Glass Fiber-Reinforced Polyphthalamide Composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1