Use of Guanidine-Containing Organomineral Complexes for Protection of Soft Polyvinyl Chloride Compounds from Photo- and Biodegradation

IF 1 4区 化学 Q4 POLYMER SCIENCE Polymer Science, Series A Pub Date : 2024-10-20 DOI:10.1134/S0965545X24701220
V. A. Gerasin, M. V. Zhurina, V. V. Kurenkov, D. I. Mendeleev
{"title":"Use of Guanidine-Containing Organomineral Complexes for Protection of Soft Polyvinyl Chloride Compounds from Photo- and Biodegradation","authors":"V. A. Gerasin,&nbsp;M. V. Zhurina,&nbsp;V. V. Kurenkov,&nbsp;D. I. Mendeleev","doi":"10.1134/S0965545X24701220","DOIUrl":null,"url":null,"abstract":"<p>The study exlores the possibility of using organomineral complexes, obtained as a result of adsorption of the macromolecular biocides (polyguanidines) on the montmorillonite surface, to protect composites based on plasticized polyvinyl chloride from photooxidative degradation and biofouling. According to UV spectro-scopy data and the results of measurements of the intrinsic viscosity of polymer solutions, it has been found that the introduction of organomineral complexes into the material helps to reduce the extent of photooxidative degradation of the material under conditions of hard UV irradiation. The organomineral complexes used effectively suppress the fouling of the composites by biofilms of the micromycete <i>Yarrowia lipolytica</i> 367-3. The mechanical characteristics of composites containing organomineral additives are maintained at a high level after thermal aging (in accordance with the technical documentation for the material). The composites also meet the technical documentation requirements for weight loss on heating, density, and volume resistivity, but increasing the concentration of the organomineral additive in the composite above 2 wt % leads to an increase in water absorption of the material above required values.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"66 3","pages":"421 - 430"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X24701220","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The study exlores the possibility of using organomineral complexes, obtained as a result of adsorption of the macromolecular biocides (polyguanidines) on the montmorillonite surface, to protect composites based on plasticized polyvinyl chloride from photooxidative degradation and biofouling. According to UV spectro-scopy data and the results of measurements of the intrinsic viscosity of polymer solutions, it has been found that the introduction of organomineral complexes into the material helps to reduce the extent of photooxidative degradation of the material under conditions of hard UV irradiation. The organomineral complexes used effectively suppress the fouling of the composites by biofilms of the micromycete Yarrowia lipolytica 367-3. The mechanical characteristics of composites containing organomineral additives are maintained at a high level after thermal aging (in accordance with the technical documentation for the material). The composites also meet the technical documentation requirements for weight loss on heating, density, and volume resistivity, but increasing the concentration of the organomineral additive in the composite above 2 wt % leads to an increase in water absorption of the material above required values.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Science, Series A
Polymer Science, Series A 化学-高分子科学
CiteScore
1.70
自引率
0.00%
发文量
55
审稿时长
3 months
期刊介绍: Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.
期刊最新文献
Erratum to: Recovered Carbon Black Filler Improves the Properties of Chitosan 3-Dimensional Composites Self-Diffraction Characterization and Optical Limiting Behavior of the PAni/PVA Nanofiber Effect of Heat-Setting Temperature on the Structure and Properties of BOPET Film Use of Guanidine-Containing Organomineral Complexes for Protection of Soft Polyvinyl Chloride Compounds from Photo- and Biodegradation On the Separation of Peptides with Inverted Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1