Yi-hua Cui, Chen-ming Zhang, Jian-feng Lin, Shi-ping Lin
{"title":"Synthesis of hydrophilic oligomer and its application as antistatic agent for ABS","authors":"Yi-hua Cui, Chen-ming Zhang, Jian-feng Lin, Shi-ping Lin","doi":"10.1007/s10965-024-04220-z","DOIUrl":null,"url":null,"abstract":"<div><p>By free radical polymerizing methylacrylylethyl trimethyl ammonium chloride (DMC), styrene (ST), and methoxy polyethylene glycol acrylate (MPEGA), a novel type of hydrophilic polymer antistatic agent (PDSM) was created. By utilizing FT-IR and <sup>1</sup>H NMR, the structure and properties of the PDSM copolymer were investigated. By using the melt blending approach, composites made of ABS (acrylonitrile-styrene-butadiene copolymer)/PDSM were generated. The composites’ mechanical characteristics and surface resistivity were measured. The results indicated that PDSM was evenly dispersed on the inner surface of ABS resin, resulting in a continuous conductive network, and serving the intended function of long-lasting antistatic. The surface resistance of ABS composites could be greatly decreased using the PDSM copolymer antistatic agent. Surface resistivity of ABS/PDSM composites were around 10<sup>9</sup>-10<sup>10</sup> Ω when the proportion of PDSM copolymer was up to 15 wt%. As MPEGA concentration increased, the surface resistivity of ABS/PDSM materials declined because MPEGA comprised hydrophilic ether bonds and flexible side chains.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04220-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
By free radical polymerizing methylacrylylethyl trimethyl ammonium chloride (DMC), styrene (ST), and methoxy polyethylene glycol acrylate (MPEGA), a novel type of hydrophilic polymer antistatic agent (PDSM) was created. By utilizing FT-IR and 1H NMR, the structure and properties of the PDSM copolymer were investigated. By using the melt blending approach, composites made of ABS (acrylonitrile-styrene-butadiene copolymer)/PDSM were generated. The composites’ mechanical characteristics and surface resistivity were measured. The results indicated that PDSM was evenly dispersed on the inner surface of ABS resin, resulting in a continuous conductive network, and serving the intended function of long-lasting antistatic. The surface resistance of ABS composites could be greatly decreased using the PDSM copolymer antistatic agent. Surface resistivity of ABS/PDSM composites were around 109-1010 Ω when the proportion of PDSM copolymer was up to 15 wt%. As MPEGA concentration increased, the surface resistivity of ABS/PDSM materials declined because MPEGA comprised hydrophilic ether bonds and flexible side chains.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.