The antibacterial and drug-loaded bilayer poly(ε-caprolactone) fibrous membrane with a shish-kebab structure

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2024-12-09 DOI:10.1007/s11706-024-0703-y
Chang Mao, Shan Liang, Yinchun Hu, Yan Wei, Di Huang
{"title":"The antibacterial and drug-loaded bilayer poly(ε-caprolactone) fibrous membrane with a shish-kebab structure","authors":"Chang Mao,&nbsp;Shan Liang,&nbsp;Yinchun Hu,&nbsp;Yan Wei,&nbsp;Di Huang","doi":"10.1007/s11706-024-0703-y","DOIUrl":null,"url":null,"abstract":"<div><p>Electrospinning has been widely used in the field of biomedical materials characterized with high porosity and good breathability as well as similarity to the natural extracellular matrix. This study employs the microsol-electrospinning technology combined with the self-induced crystallization method to fabricate the functionalized bilayer poly(ε-caprolactone) (PCL) fibrous membrane with a shish-kebab (SK) structure. The outer layer consists of the antibacterial SK-structured fibrous membrane showing favorable mechanical properties and notable inhibitory effects on the growth of <i>E. coli</i> and <i>S. aureus</i>, while salvianic acid A sodium (SAS) is encapsulated in the inner core–shell and SK-structured PCL fibrous membrane, achieving the controlled and sustained release of SAS. Moreover, good biocompatibility and enhanced cell adhesion of this membrane are also revealed. This antibacterial and drug-loaded bilayer PCL fibrous membrane with a SK structure demonstrates superior mechanical characteristics, exceptional antibacterial properties, and notable biocompatibility, suggesting its favorable outlook for future development in the area of tissue engineering.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0703-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrospinning has been widely used in the field of biomedical materials characterized with high porosity and good breathability as well as similarity to the natural extracellular matrix. This study employs the microsol-electrospinning technology combined with the self-induced crystallization method to fabricate the functionalized bilayer poly(ε-caprolactone) (PCL) fibrous membrane with a shish-kebab (SK) structure. The outer layer consists of the antibacterial SK-structured fibrous membrane showing favorable mechanical properties and notable inhibitory effects on the growth of E. coli and S. aureus, while salvianic acid A sodium (SAS) is encapsulated in the inner core–shell and SK-structured PCL fibrous membrane, achieving the controlled and sustained release of SAS. Moreover, good biocompatibility and enhanced cell adhesion of this membrane are also revealed. This antibacterial and drug-loaded bilayer PCL fibrous membrane with a SK structure demonstrates superior mechanical characteristics, exceptional antibacterial properties, and notable biocompatibility, suggesting its favorable outlook for future development in the area of tissue engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有羊肉串结构的抗菌载药双层聚ε-己内酯纤维膜
静电纺丝具有气孔率高、透气性好、与天然细胞外基质相似等特点,已广泛应用于生物医用材料领域。本研究采用微溶胶-静电纺丝技术结合自诱导结晶法制备了羊肉串(SK)结构的功能化双层聚ε-己内酯(PCL)纤维膜。外层为抗菌的sk结构纤维膜,具有良好的力学性能,对大肠杆菌和金黄色葡萄球菌的生长有明显的抑制作用,而内层的核壳和sk结构的PCL纤维膜包裹着丹丹酸A钠(SAS),实现了SAS的控释和缓释。此外,该膜具有良好的生物相容性和增强的细胞粘附性。这种具有SK结构的抗菌载药双层PCL纤维膜具有优异的力学特性、抗菌性能和显著的生物相容性,在组织工程领域具有良好的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Development of collagen and nano-hydroxyapatite-based novel self-healing cartilage Optimization of process parameters for TC11 alloy via tailoring scanning strategy in laser powder bed fusion Application of SEM-CL system in the characterization of material microstructures Quantifying functional groups in the active layer of polyamide nanofiltration membranes via the dye adsorption method Manganese mineralization-boosted photothermal conversion efficiency of Prussian blue for cancer therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1