Fifty-hertz magnetic fields induce DNA damage through activating mPTP associated mitochondrial permeability transition in senescent human fetal lung fibroblasts.

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biophysical chemistry Pub Date : 2024-12-03 DOI:10.1016/j.bpc.2024.107367
Chuan Sun, Sanying Wang, Jing Zhang, Xuqiang Zhou, Tianjun Zhu, Genxiang Mao
{"title":"Fifty-hertz magnetic fields induce DNA damage through activating mPTP associated mitochondrial permeability transition in senescent human fetal lung fibroblasts.","authors":"Chuan Sun, Sanying Wang, Jing Zhang, Xuqiang Zhou, Tianjun Zhu, Genxiang Mao","doi":"10.1016/j.bpc.2024.107367","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development and using of electromagnetic technology, artificial electromagnetic fields (EMFs) have become an emerging environmental factor in our daily life. Extremely-low-frequency (ELF) magnetic fields (MFs), generally generated by power lines and various electric equipment, is one of the most common EMFs in the environment which were concerned for the potential impact on human health. Base on limited evidence, ELF-MFs have been classified as possible carcinogen to human by International Agency for Research on Cancer (IARC), but the mechanisms have not been fully elucidated. Senescent cells are a group of special cells, characterized by cell cycle arrest, senescence-associated secretory phenotype (SASP), accumulation of macromolecular damage, and metabolic disturbance, play important role in fetal development, tissue aging, and even carcinogenesis. Thus, EMFs may promote carcinogenesis by affecting senescent cells, however, there are few studies. In this study, we found that exposure to 50 Hz MFs at 1.0 mT for 24 h could induce significant DNA damage in senescent but not non-senescent human fetal lung fibroblast suggested that senescent cells are more sensitive to 50 Hz MFs on DNA damage, and further results revealed that reactive oxygen species (ROS) generation mediated by mitochondrial permeability transition pore (mPTP) activation play critical role in this process. Our results indicated that cellular senescence can lead to cell sensitivity to the DNA damage effect of 50 Hz MFs, however, whether this play important role in mediating the carcinogenesis of EMFs await further study.</p>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"107367"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpc.2024.107367","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development and using of electromagnetic technology, artificial electromagnetic fields (EMFs) have become an emerging environmental factor in our daily life. Extremely-low-frequency (ELF) magnetic fields (MFs), generally generated by power lines and various electric equipment, is one of the most common EMFs in the environment which were concerned for the potential impact on human health. Base on limited evidence, ELF-MFs have been classified as possible carcinogen to human by International Agency for Research on Cancer (IARC), but the mechanisms have not been fully elucidated. Senescent cells are a group of special cells, characterized by cell cycle arrest, senescence-associated secretory phenotype (SASP), accumulation of macromolecular damage, and metabolic disturbance, play important role in fetal development, tissue aging, and even carcinogenesis. Thus, EMFs may promote carcinogenesis by affecting senescent cells, however, there are few studies. In this study, we found that exposure to 50 Hz MFs at 1.0 mT for 24 h could induce significant DNA damage in senescent but not non-senescent human fetal lung fibroblast suggested that senescent cells are more sensitive to 50 Hz MFs on DNA damage, and further results revealed that reactive oxygen species (ROS) generation mediated by mitochondrial permeability transition pore (mPTP) activation play critical role in this process. Our results indicated that cellular senescence can lead to cell sensitivity to the DNA damage effect of 50 Hz MFs, however, whether this play important role in mediating the carcinogenesis of EMFs await further study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
期刊最新文献
Salvianolic acid B prevents the amyloid transformation of A53T mutant of α-synuclein. Bilirubin: Photophysical and photochemical properties, phototherapy, analytical methods of measurement. A short review. Self-assembling of coiled-coil peptides into virus-like particles: Basic principles, properties, design, and applications with special focus on vaccine design and delivery. Development of immobilized peroxidase on amino-functionalized magnetic MgFe2O4 nanoparticles for antioxidant activity and decolorization. Fifty-hertz magnetic fields induce DNA damage through activating mPTP associated mitochondrial permeability transition in senescent human fetal lung fibroblasts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1