Integrating adsorption and in-situ catalytic regeneration on N doped carbon aerogel for sustainable continuous-flow water treatment.

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2025-02-01 Epub Date: 2024-12-04 DOI:10.1016/j.envres.2024.120549
Chengbin Sun, Lingjie Song, Xiaoli Dong, Xiufang Zhang, Guanlong Wang
{"title":"Integrating adsorption and in-situ catalytic regeneration on N doped carbon aerogel for sustainable continuous-flow water treatment.","authors":"Chengbin Sun, Lingjie Song, Xiaoli Dong, Xiufang Zhang, Guanlong Wang","doi":"10.1016/j.envres.2024.120549","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxymonosulfate (PMS) activation renders a promising way for in-situ regeneration of carbon-based adsorbents towards sustainable water decontamination, but the effects of structure and composition of carbon adsorbent on its adsorption and catalytic regeneration performances remains unclear. Herein, the nitrogen-doped carbon aerogels (NCAs) were prepared to couple adsorption and PMS activation in a continuous fixed-bed reactor for effective bisphenol A (BPA) removal. The nitrogen species and carbon structure of NCAs were varied by changing carbonization temperature (700 °C, 800 °C, 900 °C and 1000 °C) to investigate their correlation with the adsorption and catalytic regeneration abilities of NCAs. Results showed the PMS activation significantly boosted the adsorption capacity of NCAs and extended the breakthrough time of BPA. The optimal NCA-800/PMS system showed 1.8 times higher adsorption capacity and 37.5 times longer breakthrough time that those of NCA-800 alone. Moreover, the NCA-800/PMS system also demonstrated good adaptability across a broad pH range (3.0-12.0) and maintained high performance in real surface water matrices. Experimental and characteristic results collectively confirmed the critical roles of carbon structure and N species of NCA in adsorption and catalytic regeneration: On one hand, the intrinsic carbon defects served as the main adsorption site for BPA; on the other hand, the pyrrolic N and graphitic N promoted PMS adsorption and surface-mediated electron transfer process, while the electron-deficient C atoms adjacent to N species induced PMS oxidation into <sup>1</sup>O<sub>2</sub>, which jointly contributed to efficient BPA degradation for in-situ regeneration of NCA.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120549"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envres.2024.120549","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Peroxymonosulfate (PMS) activation renders a promising way for in-situ regeneration of carbon-based adsorbents towards sustainable water decontamination, but the effects of structure and composition of carbon adsorbent on its adsorption and catalytic regeneration performances remains unclear. Herein, the nitrogen-doped carbon aerogels (NCAs) were prepared to couple adsorption and PMS activation in a continuous fixed-bed reactor for effective bisphenol A (BPA) removal. The nitrogen species and carbon structure of NCAs were varied by changing carbonization temperature (700 °C, 800 °C, 900 °C and 1000 °C) to investigate their correlation with the adsorption and catalytic regeneration abilities of NCAs. Results showed the PMS activation significantly boosted the adsorption capacity of NCAs and extended the breakthrough time of BPA. The optimal NCA-800/PMS system showed 1.8 times higher adsorption capacity and 37.5 times longer breakthrough time that those of NCA-800 alone. Moreover, the NCA-800/PMS system also demonstrated good adaptability across a broad pH range (3.0-12.0) and maintained high performance in real surface water matrices. Experimental and characteristic results collectively confirmed the critical roles of carbon structure and N species of NCA in adsorption and catalytic regeneration: On one hand, the intrinsic carbon defects served as the main adsorption site for BPA; on the other hand, the pyrrolic N and graphitic N promoted PMS adsorption and surface-mediated electron transfer process, while the electron-deficient C atoms adjacent to N species induced PMS oxidation into 1O2, which jointly contributed to efficient BPA degradation for in-situ regeneration of NCA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N掺杂碳气凝胶吸附与原位催化再生相结合的可持续连续流水处理技术。
过氧单硫酸盐(PMS)活化为碳基吸附剂的原位再生提供了一种很有前景的方法,但碳吸附剂的结构和组成对其吸附和催化再生性能的影响尚不清楚。在连续固定床反应器中制备了氮掺杂碳气凝胶(NCAs),将其吸附和PMS活化结合起来,有效去除双酚a (BPA)。研究了不同炭化温度(700℃、800℃、900℃和1000℃)下NCAs的氮种类和碳结构与NCAs吸附和催化再生能力的关系。结果表明,PMS活化显著提高了NCAs的吸附能力,延长了BPA的突破时间。优化后的NCA-800/PMS体系的吸附量比单独使用NCA-800时提高了1.8倍,突破时间延长了37.5倍。此外,NCA-800/PMS系统在较宽的pH范围内(3.0-12.0)也表现出良好的适应性,并在实际地表水基质中保持高性能。实验结果和表征结果共同证实了NCA的碳结构和N种在吸附和催化再生中的关键作用:一方面,其固有碳缺陷是BPA的主要吸附位点;另一方面,吡咯N和石墨N促进了PMS的吸附和表面介导的电子转移过程,而邻近N种的缺电子C原子诱导PMS氧化成1O2,共同促进了BPA的高效降解,实现了NCA的原位再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
Neighborhood socioeconomic disparities in cancer incidence following a hypothetical intervention to increase residential greenspace cover in the UK Biobank cohort. Chemical mixtures of mercury, PCBs, PFAS, and pesticides in freshwater fish in the US and the risks they pose for fish consumption. Veterinary tetracycline residues: Environmental occurrence, ecotoxicity, and degradation mechanism. Precise structural regulation of copper-based electrocatalysts for sustainable nitrate reduction to ammonia. Novel metal-organic framework hydrogel for enhanced selective removal of uranyl ions from nuclear wastewater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1