BRG1 improves reprogramming efficiency by enhancing glycolytic metabolism.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2024-12-06 DOI:10.1007/s00018-024-05527-2
Xuan Ren, Shihai Huang, Jianchun Xu, Qingsong Xue, Tairan Xu, Deshun Shi, Shinan Ma, Xiangping Li
{"title":"BRG1 improves reprogramming efficiency by enhancing glycolytic metabolism.","authors":"Xuan Ren, Shihai Huang, Jianchun Xu, Qingsong Xue, Tairan Xu, Deshun Shi, Shinan Ma, Xiangping Li","doi":"10.1007/s00018-024-05527-2","DOIUrl":null,"url":null,"abstract":"<p><p>BRG1 has been found to promote the generation of induced pluripotent stem cells (iPSCs) by regulating epigenetic modifications or binding to transcription factors, however, the role of BRG1 on the cellular metabolism during reprogramming has not been reported. In this study, we found that BRG1 improved the efficiency of porcine iPSC generation, and upregulated the expression of pluripotency-related factors. Further analysis revealed that BRG1 promoted cellular glycolysis, and increased levels of glycolysis-related metabolites. It enhanced the transcriptional activity of glycolysis-related gene HK2, PKM2, and PFK-1 promoters, and decreased the enrichment of H3K9me3 in glycolysis- and pluripotency-related gene promoters. BRG1 also increased the phosphorylation level at the Ser473 site of AKT protein. The specific PI3K/AKT signaling pathway inhibitor, LY294002, impaired the generation of porcine iPSCs, downregulated the expression of pluripotency-related factors, and inhibited cellular glycolysis, overexpressing BRG1 rescued those changes caused by LY294002 treatment. In addition, the glycolysis inhibitor 2-DG and BRG1 inhibitor PFI-3 had similar effects to LY294002. The above results suggest that overexpression of BRG1 promotes the generation of porcine iPSCs by facilitating glycolytic reprogramming through the PI3K/AKT signaling pathway.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"482"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05527-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BRG1 has been found to promote the generation of induced pluripotent stem cells (iPSCs) by regulating epigenetic modifications or binding to transcription factors, however, the role of BRG1 on the cellular metabolism during reprogramming has not been reported. In this study, we found that BRG1 improved the efficiency of porcine iPSC generation, and upregulated the expression of pluripotency-related factors. Further analysis revealed that BRG1 promoted cellular glycolysis, and increased levels of glycolysis-related metabolites. It enhanced the transcriptional activity of glycolysis-related gene HK2, PKM2, and PFK-1 promoters, and decreased the enrichment of H3K9me3 in glycolysis- and pluripotency-related gene promoters. BRG1 also increased the phosphorylation level at the Ser473 site of AKT protein. The specific PI3K/AKT signaling pathway inhibitor, LY294002, impaired the generation of porcine iPSCs, downregulated the expression of pluripotency-related factors, and inhibited cellular glycolysis, overexpressing BRG1 rescued those changes caused by LY294002 treatment. In addition, the glycolysis inhibitor 2-DG and BRG1 inhibitor PFI-3 had similar effects to LY294002. The above results suggest that overexpression of BRG1 promotes the generation of porcine iPSCs by facilitating glycolytic reprogramming through the PI3K/AKT signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BRG1通过增强糖酵解代谢提高重编程效率。
研究发现BRG1通过调节表观遗传修饰或与转录因子结合促进诱导多能干细胞(iPSCs)的产生,然而,BRG1在重编程过程中对细胞代谢的作用尚未见报道。在本研究中,我们发现BRG1提高了猪iPSC的生成效率,并上调了多能性相关因子的表达。进一步分析显示,BRG1促进细胞糖酵解,并增加糖酵解相关代谢物的水平。它增强了糖酵解相关基因HK2、PKM2和PFK-1启动子的转录活性,降低了糖酵解和多能性相关基因启动子中H3K9me3的富集。BRG1还增加了AKT蛋白Ser473位点的磷酸化水平。特异性PI3K/AKT信号通路抑制剂LY294002抑制了猪iPSCs的生成,下调了多能性相关因子的表达,抑制了细胞糖酵解,过表达BRG1挽救了LY294002处理引起的这些变化。此外,糖酵解抑制剂2-DG和BRG1抑制剂PFI-3的作用与LY294002相似。上述结果表明,BRG1的过表达通过PI3K/AKT信号通路促进糖酵解重编程,从而促进猪iPSCs的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
PFI-3
阿拉丁
PFI-3
Sigma
polybrene
Sigma
polybrene
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
C1orf115 interacts with clathrin adaptors to undergo endocytosis and induces ABCA1 to promote enteric cholesterol efflux. Synergistic combination of orally available safe-in-man pleconaril, AG7404, and mindeudesivir inhibits enterovirus infections in human cell and organoid cultures. Activation and evasion of inflammasomes during viral and microbial infection. BRAT1 - a new therapeutic target for glioblastoma. Cytoophidium complexes resonate with cell fates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1