Fatal fall from a height: is it possible to apply artificial intelligence techniques for height estimation?

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL International Journal of Legal Medicine Pub Date : 2024-12-07 DOI:10.1007/s00414-024-03371-4
Alberto Blandino, Anna Maria Zanaboni, Dario Malchiodi, Carlotta Virginia Di Francesco, Claudio Spada, Chiara Faraone, Guido Vittorio Travaini, Michelangelo Bruno Casali
{"title":"Fatal fall from a height: is it possible to apply artificial intelligence techniques for height estimation?","authors":"Alberto Blandino, Anna Maria Zanaboni, Dario Malchiodi, Carlotta Virginia Di Francesco, Claudio Spada, Chiara Faraone, Guido Vittorio Travaini, Michelangelo Bruno Casali","doi":"10.1007/s00414-024-03371-4","DOIUrl":null,"url":null,"abstract":"<p><p>Fall from a height trauma is characterized by a multiplicity of injuries, related to multiple factors. The height of the fall is the factor that most influences the kinetic energy of the body and appears to be one of the factors that most affects the extent of injury. The purpose of this work is to evaluate, through machine learning algorithms, whether the autopsy injury pattern can be useful in estimating fall height. 455 victims of falls from a height which underwent a complete autopsy were retrospectively analyzed. The cases were enlisted by dividing them into 7 groups according to the height of the fall: 6 or less meters; 9 m, 12 m, 15 m, 18 m, 21 m, 24 m or more. Autoptic data were registered through the use of a previously published visceral and skeletal table. A total of 25 descriptors were used. Reduction of values in the range, standard and robust scaling were used as preprocessing methods. Principal Component Analysis, Single Value Decomposition and Independent Component Analysis were applied for dimensionality reduction. Cross validation was performed with 5 internal and external folds to ensure the validity of the results. The learning algorithms that generated the best models were Linear Regression, Support Vector Regressor, Kernel Ridge, Decision trees and Random forests. The best mean absolute error was 4.58 ± 1.28 m when dimensionality reduction was applied. Without any dimensionality reduction, the best result was 4.37 ± 1.27 m, suggesting a good performance of the proposed algorithms, with better performance when dimensionality is not automatically reduced.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-024-03371-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fall from a height trauma is characterized by a multiplicity of injuries, related to multiple factors. The height of the fall is the factor that most influences the kinetic energy of the body and appears to be one of the factors that most affects the extent of injury. The purpose of this work is to evaluate, through machine learning algorithms, whether the autopsy injury pattern can be useful in estimating fall height. 455 victims of falls from a height which underwent a complete autopsy were retrospectively analyzed. The cases were enlisted by dividing them into 7 groups according to the height of the fall: 6 or less meters; 9 m, 12 m, 15 m, 18 m, 21 m, 24 m or more. Autoptic data were registered through the use of a previously published visceral and skeletal table. A total of 25 descriptors were used. Reduction of values in the range, standard and robust scaling were used as preprocessing methods. Principal Component Analysis, Single Value Decomposition and Independent Component Analysis were applied for dimensionality reduction. Cross validation was performed with 5 internal and external folds to ensure the validity of the results. The learning algorithms that generated the best models were Linear Regression, Support Vector Regressor, Kernel Ridge, Decision trees and Random forests. The best mean absolute error was 4.58 ± 1.28 m when dimensionality reduction was applied. Without any dimensionality reduction, the best result was 4.37 ± 1.27 m, suggesting a good performance of the proposed algorithms, with better performance when dimensionality is not automatically reduced.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.50%
发文量
165
审稿时长
1 months
期刊介绍: The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.
期刊最新文献
Exploring radiomic features of lateral cerebral ventricles in postmortem CT for postmortem interval estimation. Fluorescence of various buried fresh and fresh-frozen-thawed tissue types up until the point of active decay: a human taphonomy study. Exploration and application of microorganisms related to the inference of the time since deposition (TsD) in semen and blood stains. Construction of the time since deposition (TsD) model in saliva stains with 16S rRNA full-length sequencing technology and microbial markers. Expression of RIPK-1 and S-100B in traumatic brain injury- exploring a forensic cases series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1