Bayesian brain theory: Computational neuroscience of belief.

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neuroscience Pub Date : 2025-02-06 Epub Date: 2024-12-04 DOI:10.1016/j.neuroscience.2024.12.003
Hugo Bottemanne
{"title":"Bayesian brain theory: Computational neuroscience of belief.","authors":"Hugo Bottemanne","doi":"10.1016/j.neuroscience.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian brain theory, a computational framework grounded in the principles of Predictive Processing (PP), proposes a mechanistic account of how beliefs are formed and updated. This theory assumes that the brain encodes a generative model of its environment, made up of probabilistic beliefs organized in networks, from which it generates predictions about future sensory inputs. The difference between predictions and sensory signals produces prediction errors, which are used to update belief networks. In this article, we introduce the fundamental principles of Bayesian brain theory, and show how the brain dynamics of prediction are associated with the generation and evolution of beliefs.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"198-204"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian brain theory, a computational framework grounded in the principles of Predictive Processing (PP), proposes a mechanistic account of how beliefs are formed and updated. This theory assumes that the brain encodes a generative model of its environment, made up of probabilistic beliefs organized in networks, from which it generates predictions about future sensory inputs. The difference between predictions and sensory signals produces prediction errors, which are used to update belief networks. In this article, we introduce the fundamental principles of Bayesian brain theory, and show how the brain dynamics of prediction are associated with the generation and evolution of beliefs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯脑理论:信仰的计算神经科学。
贝叶斯脑理论是一种基于预测处理原理的计算框架,提出了一种信念生成和更新的机制公式。这一理论假设,大脑对其环境的生成模型进行编码,该模型由组织在网络中的概率信念组成,并由此产生对未来感官输入的预测。预测和感觉信号之间的差异产生预测误差,用于更新信念网络。在这篇文章中,我们介绍了信念的计算神经科学的基本原理,并展示了这种预测和更新的动态如何为精神病学中的信念现象学提供了一个全面的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
期刊最新文献
Effects of ascorbic acid on myelination in offspring of advanced maternal age. Repeated exposure to high-dose nicotine induces prefrontal gray matter atrophy in adolescent male rats. Bayesian brain theory: Computational neuroscience of belief. Effects and mechanisms of Apelin in treating central nervous system diseases. Neuroticism and cerebral small vessel disease: A genetic correlation and Mendelian randomization analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1