Laurine Lagache, Yanis Zirem, Émilie Le Rhun, Isabelle Fournier, Michel Salzet
{"title":"Predicting Protein Pathways Associated to Tumor Heterogeneity by Correlating Spatial Lipidomics and Proteomics: The Dry Proteomic Concept.","authors":"Laurine Lagache, Yanis Zirem, Émilie Le Rhun, Isabelle Fournier, Michel Salzet","doi":"10.1016/j.mcpro.2024.100891","DOIUrl":null,"url":null,"abstract":"<p><p>Prediction of proteins and associated biological pathways from lipid analyses via matrix-assisted laser desorption/ionization (MALDI) MSI is a pressing challenge. We introduced \"dry proteomics,\" using MALDI MSI to validate spatial localization of identified optimal clusters in lipid imaging. Consistent cluster appearance across omics images suggests association with specific lipid and protein in distinct biological pathways, forming the basis of dry proteomics. The methodology was refined using rat brain tissue as a model, then applied to human glioblastoma, a highly heterogeneous cancer. Sequential tissue sections underwent omics MALDI MSI and unsupervised clustering. Spatial omics analysis facilitated lipid and protein characterization, leading to a predictive model identifying clusters in any tissue based on unique lipid signatures and predicting associated protein pathways. Application to rat brain slices revealed diverse tissue subpopulations, including successfully predicted cerebellum areas. Similarly, the methodology was applied to a dataset from a cohort of 50 glioblastoma patients, reused from a previous study. However, among the 50 patients, only 13 lipid signatures from MALDI MSI data were available, allowing for the identification of lipid-protein associations that correlated with patient prognosis. For cases lacking lipid imaging data, a classification model based on protein data was developed from dry proteomic results to effectively categorize the remaining cohort.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100891"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100891","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction of proteins and associated biological pathways from lipid analyses via matrix-assisted laser desorption/ionization (MALDI) MSI is a pressing challenge. We introduced "dry proteomics," using MALDI MSI to validate spatial localization of identified optimal clusters in lipid imaging. Consistent cluster appearance across omics images suggests association with specific lipid and protein in distinct biological pathways, forming the basis of dry proteomics. The methodology was refined using rat brain tissue as a model, then applied to human glioblastoma, a highly heterogeneous cancer. Sequential tissue sections underwent omics MALDI MSI and unsupervised clustering. Spatial omics analysis facilitated lipid and protein characterization, leading to a predictive model identifying clusters in any tissue based on unique lipid signatures and predicting associated protein pathways. Application to rat brain slices revealed diverse tissue subpopulations, including successfully predicted cerebellum areas. Similarly, the methodology was applied to a dataset from a cohort of 50 glioblastoma patients, reused from a previous study. However, among the 50 patients, only 13 lipid signatures from MALDI MSI data were available, allowing for the identification of lipid-protein associations that correlated with patient prognosis. For cases lacking lipid imaging data, a classification model based on protein data was developed from dry proteomic results to effectively categorize the remaining cohort.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes