Xiaoyuan Hu, Youyou Li, Yun Zhang, Zihan Li, Lei Dong, Shijie Bai, Gaoyu Wang, Ruoyan Peng, Yi Huang, Xin Li, Chuanning Tang, Xiuji Cui, Lina Niu, Gang Lu, Jiang Du, Feifei Yin
{"title":"Discovery of two novel foamy viruses in sea lions and dolphins provides insight into their evolutionary history.","authors":"Xiaoyuan Hu, Youyou Li, Yun Zhang, Zihan Li, Lei Dong, Shijie Bai, Gaoyu Wang, Ruoyan Peng, Yi Huang, Xin Li, Chuanning Tang, Xiuji Cui, Lina Niu, Gang Lu, Jiang Du, Feifei Yin","doi":"10.1016/j.meegid.2024.105695","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence and evolution of foamy viruses (FVs) have become the focus of research because of the risk of new zoonotic diseases. FVs have been isolated from various mammals and exhibit long-term co-speciation with their hosts. They also appear to be mild and nonpathogenic to their hosts. However, they may increase the risk of infection by other pathogens or exacerbate the symptoms of other diseases. Based on the data obtained using next-generation sequencing (NGS), we amplified and obtained the complete genomes of the two new FVs discovered in the bottlenose dolphin (Tursiops truncatus) and the South American sea lion (Otaria byronia) at the Qingdao Polar Haichang Ocean Park. Analysis and prediction of the novel FV's genomic structure revealed that it was consistent with that of the known mammalian FVs. The polmerase (pol) genes of the novel OFVoby_1 and DFVttr_1 showed less than 61.87 % and 61.83 % amino acid identity, respectively, with other known FVs belonging to the Retroviridae family. The host was likely to carry the FV for a considerable amount of time, as evidenced by the different times DFVttr_1 was discovered. The phylogenetic analysis revealed that the pol of OFVoby_1 and DFVttr_1 closely clustered with the FVs of Simiispumavirus and Felispumavirus, respectively. However, they both displayed distinct branches. According to the international committee on taxonomy of viruses (ICTV) FV classification criteria, FVs carried by dolphins and sea lions belong to two new genera within the Spumaretrovirinae subfamily. Using Bayesian analysis to simultaneously determine divergence dates and phylogenetic relationships revealed unique FVs with a divergence date of approximately 60 million years. This study helps us understand the FVs evolution and provides a scientific basis for future investigations into animal-borne infectious diseases.</p>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":" ","pages":"105695"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.meegid.2024.105695","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence and evolution of foamy viruses (FVs) have become the focus of research because of the risk of new zoonotic diseases. FVs have been isolated from various mammals and exhibit long-term co-speciation with their hosts. They also appear to be mild and nonpathogenic to their hosts. However, they may increase the risk of infection by other pathogens or exacerbate the symptoms of other diseases. Based on the data obtained using next-generation sequencing (NGS), we amplified and obtained the complete genomes of the two new FVs discovered in the bottlenose dolphin (Tursiops truncatus) and the South American sea lion (Otaria byronia) at the Qingdao Polar Haichang Ocean Park. Analysis and prediction of the novel FV's genomic structure revealed that it was consistent with that of the known mammalian FVs. The polmerase (pol) genes of the novel OFVoby_1 and DFVttr_1 showed less than 61.87 % and 61.83 % amino acid identity, respectively, with other known FVs belonging to the Retroviridae family. The host was likely to carry the FV for a considerable amount of time, as evidenced by the different times DFVttr_1 was discovered. The phylogenetic analysis revealed that the pol of OFVoby_1 and DFVttr_1 closely clustered with the FVs of Simiispumavirus and Felispumavirus, respectively. However, they both displayed distinct branches. According to the international committee on taxonomy of viruses (ICTV) FV classification criteria, FVs carried by dolphins and sea lions belong to two new genera within the Spumaretrovirinae subfamily. Using Bayesian analysis to simultaneously determine divergence dates and phylogenetic relationships revealed unique FVs with a divergence date of approximately 60 million years. This study helps us understand the FVs evolution and provides a scientific basis for future investigations into animal-borne infectious diseases.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .