Physiological responses to different temperature in the liver of Takifugu rubripes larvae revealed by integrated transcriptomic and metabolomic analyses.
{"title":"Physiological responses to different temperature in the liver of Takifugu rubripes larvae revealed by integrated transcriptomic and metabolomic analyses.","authors":"Huiting Zhou, Jia Wang, Mingtao Hu, Xufang Shen, Rui Gao, Hongwei Yan, Qi Liu, Ying Liu, Yushun Tian, Heng Wang, Xiuli Wang, Shaodong Qu, Chuang Fu","doi":"10.1016/j.cbd.2024.101371","DOIUrl":null,"url":null,"abstract":"<p><p>Water temperature plays a vital role in shaping the physical conditions crucial for the growth, development and reproduction of fish species. Since limited comprehensive multi-omics analyses exploring the molecular mechanisms of temperature influences on the early life stages of fish. Here, the effects of temperature variations on the growth of Takifugu rubripes, a commercial teleost farmed in Asia were investigated. Nineteen-days-old fugu larvae were subjected to different temperature (15 °C-T15, 20 °C-T20, 25 °C-T25) for 30 days. Liver tissues were harvested at the end of the study for transcriptomic and metabolomic assessments. The T. rubripes larvae in the T15 group showed a significant decrease in total length and body weight compared to the T20 and T25 groups (p < 0.05). 1344, 416, and 2080 differentially expressed genes (DEGs) were identified in T15-vs-T20, T20-vs-T25, and T15-vs-T25 comparisons, respectively. Those DEGs were mainly enriched in metabolic, protein digestion and absorption, steroid biosynthesis, and glycerophospholipid metabolism pathways. 15 DEGs were randomly selected for RNA-seq validation, and the transcriptome results were consistent with the qPCR validation results, illustrating the accuracy of transcriptome sequencing. 340, 238, and 330 significantly different metabolites (SDMs) were identified in positive modes when comparing in T15-vs-T20, T20-vs-T25, and T15-vs-T25, respectively. Additionally, 145, 137, and 159 SDMs were identified in negative modes within the three comparisons. Those SDMs enriched in biosynthesis of secondary metabolites, glycerophospholipid metabolism, linoleic acid metabolism, and metabolic pathways. The integration of transcriptomic and metabolomic analyses indicated that DEGs and SDMs mainly enriched in metabolic pathways. These discoveries provide valuable insights into the effects of temperature on fish larvae in aquaculture, laying a foundation for future breeding approaches aimed at improving the growth of T. rubripes.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101371"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2024.101371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Water temperature plays a vital role in shaping the physical conditions crucial for the growth, development and reproduction of fish species. Since limited comprehensive multi-omics analyses exploring the molecular mechanisms of temperature influences on the early life stages of fish. Here, the effects of temperature variations on the growth of Takifugu rubripes, a commercial teleost farmed in Asia were investigated. Nineteen-days-old fugu larvae were subjected to different temperature (15 °C-T15, 20 °C-T20, 25 °C-T25) for 30 days. Liver tissues were harvested at the end of the study for transcriptomic and metabolomic assessments. The T. rubripes larvae in the T15 group showed a significant decrease in total length and body weight compared to the T20 and T25 groups (p < 0.05). 1344, 416, and 2080 differentially expressed genes (DEGs) were identified in T15-vs-T20, T20-vs-T25, and T15-vs-T25 comparisons, respectively. Those DEGs were mainly enriched in metabolic, protein digestion and absorption, steroid biosynthesis, and glycerophospholipid metabolism pathways. 15 DEGs were randomly selected for RNA-seq validation, and the transcriptome results were consistent with the qPCR validation results, illustrating the accuracy of transcriptome sequencing. 340, 238, and 330 significantly different metabolites (SDMs) were identified in positive modes when comparing in T15-vs-T20, T20-vs-T25, and T15-vs-T25, respectively. Additionally, 145, 137, and 159 SDMs were identified in negative modes within the three comparisons. Those SDMs enriched in biosynthesis of secondary metabolites, glycerophospholipid metabolism, linoleic acid metabolism, and metabolic pathways. The integration of transcriptomic and metabolomic analyses indicated that DEGs and SDMs mainly enriched in metabolic pathways. These discoveries provide valuable insights into the effects of temperature on fish larvae in aquaculture, laying a foundation for future breeding approaches aimed at improving the growth of T. rubripes.