Márcia Cristina Bezerra Melo , Bruno Roberto Spirandeli , Lucas Barbosa , Verônica Ribeiro dos Santos , Tiago Moreira Bastos de Campos , Gilmar Patrocínio Thim , Eliandra de Sousa Trichês
{"title":"Enhanced mechanical strength and bioactivity of 3D-printed β-TCP scaffolds coated with bioactive glasses","authors":"Márcia Cristina Bezerra Melo , Bruno Roberto Spirandeli , Lucas Barbosa , Verônica Ribeiro dos Santos , Tiago Moreira Bastos de Campos , Gilmar Patrocínio Thim , Eliandra de Sousa Trichês","doi":"10.1016/j.jmbbm.2024.106850","DOIUrl":null,"url":null,"abstract":"<div><div>3D printing in scaffold production offers a promising approach, enabling precise architectural design that closely mimics the porosity and interconnectivity of natural bone. β-Tricalcium phosphate (β-Ca₃(PO₄)₂, β-TCP), with a chemical composition similar to the inorganic component of bone, is a widely used material for scaffold fabrication. Recent advances have made it possible to functionalize ceramic scaffolds to improve bone regeneration and repair while enabling the in situ release of therapeutic agents to treat bone infections. In this study, 3D-printed β-TCP scaffolds were coated with bioactive glasses, 45S5 (45SiO₂ – 24.5Na₂O – 24.5CaO – 6P₂O₅, wt.%) and 58S (58SiO₂ – 33CaO – 9P₂O₅, wt.%), using sol-gel solutions through a vacuum impregnation technique. The β-TCP ink exhibited pseudoplastic behavior, which facilitated its 3D printing. The resulting scaffolds demonstrated high fidelity to the designed model, featuring well-aligned filaments and minimal collapse of the lower layers after sintering. Elemental mapping revealed that 45S5 glass formed a surface coating around the scaffold struts, whereas 58S glass penetrated the internal structure, this occurred due to their differing viscosities at high temperatures. Compared to uncoated β-TCP scaffolds, the coatings significantly improved mechanical strength, with increases of 63% and 126% for scaffolds coated with 45S5 and 58S, respectively. Bioactivity was confirmed through an apatite mineralization assay in simulated body fluid, which demonstrated hydroxyapatite precipitation on both coated scaffolds, albeit with distinct morphologies. Since this study focused on acellular scaffolds, further research is necessary to fully explore the potential of these bioactive scaffolds with optimized mechanical properties in biological systems.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106850"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612400482X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
3D printing in scaffold production offers a promising approach, enabling precise architectural design that closely mimics the porosity and interconnectivity of natural bone. β-Tricalcium phosphate (β-Ca₃(PO₄)₂, β-TCP), with a chemical composition similar to the inorganic component of bone, is a widely used material for scaffold fabrication. Recent advances have made it possible to functionalize ceramic scaffolds to improve bone regeneration and repair while enabling the in situ release of therapeutic agents to treat bone infections. In this study, 3D-printed β-TCP scaffolds were coated with bioactive glasses, 45S5 (45SiO₂ – 24.5Na₂O – 24.5CaO – 6P₂O₅, wt.%) and 58S (58SiO₂ – 33CaO – 9P₂O₅, wt.%), using sol-gel solutions through a vacuum impregnation technique. The β-TCP ink exhibited pseudoplastic behavior, which facilitated its 3D printing. The resulting scaffolds demonstrated high fidelity to the designed model, featuring well-aligned filaments and minimal collapse of the lower layers after sintering. Elemental mapping revealed that 45S5 glass formed a surface coating around the scaffold struts, whereas 58S glass penetrated the internal structure, this occurred due to their differing viscosities at high temperatures. Compared to uncoated β-TCP scaffolds, the coatings significantly improved mechanical strength, with increases of 63% and 126% for scaffolds coated with 45S5 and 58S, respectively. Bioactivity was confirmed through an apatite mineralization assay in simulated body fluid, which demonstrated hydroxyapatite precipitation on both coated scaffolds, albeit with distinct morphologies. Since this study focused on acellular scaffolds, further research is necessary to fully explore the potential of these bioactive scaffolds with optimized mechanical properties in biological systems.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.