Identification of novel influenza virus H3N2 nucleoprotein inhibitors using most promising epicatechin derivatives.

Tajul Islam Mamun, Sharifa Sultana, Farjana Islam Aovi, Neeraj Kumar, Dharmarpu Vijay, Umberto Laino Fulco, Al-Anood M Al-Dies, Hesham M Hassan, Ahmed Al-Emam, Jonas Ivan Nobre Oliveira
{"title":"Identification of novel influenza virus H3N2 nucleoprotein inhibitors using most promising epicatechin derivatives.","authors":"Tajul Islam Mamun, Sharifa Sultana, Farjana Islam Aovi, Neeraj Kumar, Dharmarpu Vijay, Umberto Laino Fulco, Al-Anood M Al-Dies, Hesham M Hassan, Ahmed Al-Emam, Jonas Ivan Nobre Oliveira","doi":"10.1016/j.compbiolchem.2024.108293","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza A virus is a leading cause of acute respiratory tract infections, posing a significant global health threat. Current treatment options are limited and increasingly ineffective due to viral mutations. This study aimed to identify potential drug candidates targeting the nucleoprotein of the H3N2 subtype of Influenza A virus. We focused on epicatechin derivatives and employed a series of computational approaches, including ADMET profiling, drug-likeness evaluation, PASS predictions, molecular docking, molecular dynamics simulations, Principal Component Analysis (PCA), dynamic cross-correlation matrix (DCCM) analyses, and free energy landscape assessments. Molecular docking and dynamics simulations revealed strong and stable binding interactions between the derivatives and the target protein, with complexes 01 and 81 exhibiting the highest binding affinities. Additionally, ADMET profiling indicated favorable pharmacokinetic properties for these compounds, supporting their potential as effective antiviral agents. Compound 81 demonstrated exceptional quantum chemical descriptors, including a small HOMO-LUMO energy gap, high electronegativity, and significant softness, suggesting high chemical reactivity and strong electron-accepting capabilities. These properties enhance Compound 81's potential to interact effectively with the H3N2 nucleoprotein. Experimental validation is strongly recommended to advance these compounds toward the development of novel antiviral therapies to address the global threat of influenza.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108293"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Influenza A virus is a leading cause of acute respiratory tract infections, posing a significant global health threat. Current treatment options are limited and increasingly ineffective due to viral mutations. This study aimed to identify potential drug candidates targeting the nucleoprotein of the H3N2 subtype of Influenza A virus. We focused on epicatechin derivatives and employed a series of computational approaches, including ADMET profiling, drug-likeness evaluation, PASS predictions, molecular docking, molecular dynamics simulations, Principal Component Analysis (PCA), dynamic cross-correlation matrix (DCCM) analyses, and free energy landscape assessments. Molecular docking and dynamics simulations revealed strong and stable binding interactions between the derivatives and the target protein, with complexes 01 and 81 exhibiting the highest binding affinities. Additionally, ADMET profiling indicated favorable pharmacokinetic properties for these compounds, supporting their potential as effective antiviral agents. Compound 81 demonstrated exceptional quantum chemical descriptors, including a small HOMO-LUMO energy gap, high electronegativity, and significant softness, suggesting high chemical reactivity and strong electron-accepting capabilities. These properties enhance Compound 81's potential to interact effectively with the H3N2 nucleoprotein. Experimental validation is strongly recommended to advance these compounds toward the development of novel antiviral therapies to address the global threat of influenza.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites. Development of a centrosome amplification-associated signature in kidney renal clear cell carcinoma based on multiple machine learning models. In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression. Improving binding affinity prediction by emphasizing local features of drug and protein. Exploring immune gene expression and potential regulatory mechanisms in anaplastic thyroid carcinoma using a combination of single-cell and bulk RNA sequencing data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1