Unravelling long-term spatiotemporal deformation and hydrological triggers of slow-moving reservoir landslides with multi-platform SAR data

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences International Journal of Applied Earth Observation and Geoinformation Pub Date : 2024-12-05 DOI:10.1016/j.jag.2024.104301
Fengnian Chang, Shaochun Dong, Hongwei Yin, Xiao Ye, Zhenyun Wu, Wei Zhang, Honghu Zhu
{"title":"Unravelling long-term spatiotemporal deformation and hydrological triggers of slow-moving reservoir landslides with multi-platform SAR data","authors":"Fengnian Chang, Shaochun Dong, Hongwei Yin, Xiao Ye, Zhenyun Wu, Wei Zhang, Honghu Zhu","doi":"10.1016/j.jag.2024.104301","DOIUrl":null,"url":null,"abstract":"Active landslides pose significant global risks, underscoring precise displacement monitoring for effective geohazard management and early warning. The Three Gorges Reservoir Area (TGRA) in China, a pivotal section of the world’s largest water conservancy project, has developed thousands of landslides due to unique hydrogeological conditions and reservoir operations. Many of these landslides are oriented north–south and covered by seasonal vegetation, which complicates the conventional remote sensing-based displacement monitoring, particularly in estimating the three-dimensional (3D) deformation and long-term time series displacement. To address these challenges, we propose an approach that integrates interferometric synthetic aperture radar (InSAR), pixel offset tracking (POT), stacking, and priori kinematic models to fully utilize the phase and amplitude information of multi-platform, multi-band SAR images (i.e., L-band ALOS-1, C-band Sentinel-1, and X-band TerraSAR-X). This approach is employed to scrutinize the long-term spatiotemporal deformation and evolution mechanism of two slow-moving, north-facing reservoir landslides in the TGRA. The results reveal for the first time the 15-year-long displacement evolution of these landslides before and after reservoir impoundment, highlighting the spatiotemporal heterogeneity of landslide deformation induced by hydrologic triggers. The impoundment in September 2008 induced transient acceleration in both landslides, followed by a relatively stable, step-like deformation pattern subject to rainfall and reservoir water level (RWL) fluctuations. Rainfall, with a lag of approximately 20 days, predominantly affects both landslides, while RWL fluctuations mainly influence the deformation at landslide toes. Notably, as the distance from the reservoir increases, the influence of RWL diminishes, with lag times increasing from 8 to about 40 days. This quantitative characterization of landslide responses to triggers represents a crucial step towards improved hazard mitigation capabilities.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"210 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104301","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Active landslides pose significant global risks, underscoring precise displacement monitoring for effective geohazard management and early warning. The Three Gorges Reservoir Area (TGRA) in China, a pivotal section of the world’s largest water conservancy project, has developed thousands of landslides due to unique hydrogeological conditions and reservoir operations. Many of these landslides are oriented north–south and covered by seasonal vegetation, which complicates the conventional remote sensing-based displacement monitoring, particularly in estimating the three-dimensional (3D) deformation and long-term time series displacement. To address these challenges, we propose an approach that integrates interferometric synthetic aperture radar (InSAR), pixel offset tracking (POT), stacking, and priori kinematic models to fully utilize the phase and amplitude information of multi-platform, multi-band SAR images (i.e., L-band ALOS-1, C-band Sentinel-1, and X-band TerraSAR-X). This approach is employed to scrutinize the long-term spatiotemporal deformation and evolution mechanism of two slow-moving, north-facing reservoir landslides in the TGRA. The results reveal for the first time the 15-year-long displacement evolution of these landslides before and after reservoir impoundment, highlighting the spatiotemporal heterogeneity of landslide deformation induced by hydrologic triggers. The impoundment in September 2008 induced transient acceleration in both landslides, followed by a relatively stable, step-like deformation pattern subject to rainfall and reservoir water level (RWL) fluctuations. Rainfall, with a lag of approximately 20 days, predominantly affects both landslides, while RWL fluctuations mainly influence the deformation at landslide toes. Notably, as the distance from the reservoir increases, the influence of RWL diminishes, with lag times increasing from 8 to about 40 days. This quantitative characterization of landslide responses to triggers represents a crucial step towards improved hazard mitigation capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多平台SAR数据的缓动水库滑坡长期时空变形及水文诱因研究
活跃的山体滑坡构成了重大的全球风险,强调了对有效地质灾害管理和早期预警的精确位移监测。中国的三峡库区是世界上最大的水利工程的关键部分,由于独特的水文地质条件和水库运行,已经形成了数千个滑坡。这些滑坡中有许多是南北走向的,并被季节性植被覆盖,这使得传统的基于遥感的位移监测变得复杂,特别是在估计三维(3D)变形和长期时间序列位移方面。为了解决这些挑战,我们提出了一种集成干涉合成孔径雷达(InSAR)、像素偏移跟踪(POT)、叠加和先验运动学模型的方法,以充分利用多平台、多波段SAR图像(即l波段ALOS-1、c波段Sentinel-1和x波段TerraSAR-X)的相位和振幅信息。利用该方法研究了三峡库区两个向北缓慢移动的水库滑坡的长期时空变形与演化机制。研究结果首次揭示了水库蓄水前后滑坡15 a位移演化特征,突出了水文诱发滑坡变形的时空异质性。2008年9月的蓄水引起了两个滑坡的瞬态加速,随后出现了相对稳定的阶梯式变形模式,受降雨和水库水位波动的影响。降雨主要影响两种滑坡,其滞后时间约为20 d,而RWL波动主要影响滑坡趾部变形。值得注意的是,随着距离水库的增加,RWL的影响减小,滞后时间从8天增加到40天左右。这种滑坡对触发因素反应的定量表征是朝着提高减灾能力迈出的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Modeling the impact of pandemic on the urban thermal environment over megacities in China: Spatiotemporal analysis from the perspective of heat anomaly variations BSG-WSL: BackScatter-guided weakly supervised learning for water mapping in SAR images Identification of standing dead trees in Robinia pseudoacacia plantations across China’s Loess Plateau using multiple deep learning models Detecting glacial lake water quality indicators from RGB surveillance images via deep learning Synergistic mapping of urban tree canopy height using ICESat-2 data and GF-2 imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1