Efficient iterative methods for hyperparameter estimation in large-scale linear inverse problems

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-12-09 DOI:10.1007/s10444-024-10208-6
Khalil A. Hall-Hooper, Arvind K. Saibaba, Julianne Chung, Scot M. Miller
{"title":"Efficient iterative methods for hyperparameter estimation in large-scale linear inverse problems","authors":"Khalil A. Hall-Hooper,&nbsp;Arvind K. Saibaba,&nbsp;Julianne Chung,&nbsp;Scot M. Miller","doi":"10.1007/s10444-024-10208-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study Bayesian methods for large-scale linear inverse problems, focusing on the challenging task of hyperparameter estimation. Typical hierarchical Bayesian formulations that follow a Markov Chain Monte Carlo approach are possible for small problems but are not computationally feasible for problems with a very large number of unknown inverse parameters. In this work, we describe an empirical Bayes (EB) method to estimate hyperparameters that maximize the marginal posterior, i.e., the probability density of the hyperparameters conditioned on the data, and then we use the estimated hyperparameters to compute the posterior of the unknown inverse parameters. For problems where the computation of the square root and inverse of prior covariance matrices are not feasible, we describe an approach based on the generalized Golub-Kahan bidiagonalization to approximate the marginal posterior and seek hyperparameters that minimize the approximate marginal posterior. Numerical results from seismic and atmospheric tomography demonstrate the accuracy, robustness, and potential benefits of the proposed approach.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10208-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study Bayesian methods for large-scale linear inverse problems, focusing on the challenging task of hyperparameter estimation. Typical hierarchical Bayesian formulations that follow a Markov Chain Monte Carlo approach are possible for small problems but are not computationally feasible for problems with a very large number of unknown inverse parameters. In this work, we describe an empirical Bayes (EB) method to estimate hyperparameters that maximize the marginal posterior, i.e., the probability density of the hyperparameters conditioned on the data, and then we use the estimated hyperparameters to compute the posterior of the unknown inverse parameters. For problems where the computation of the square root and inverse of prior covariance matrices are not feasible, we describe an approach based on the generalized Golub-Kahan bidiagonalization to approximate the marginal posterior and seek hyperparameters that minimize the approximate marginal posterior. Numerical results from seismic and atmospheric tomography demonstrate the accuracy, robustness, and potential benefits of the proposed approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模线性反问题超参数估计的有效迭代方法
我们研究了大规模线性逆问题的贝叶斯方法,重点研究了超参数估计这一具有挑战性的任务。遵循马尔可夫链蒙特卡罗方法的典型层次贝叶斯公式对于小问题是可能的,但对于具有大量未知逆参数的问题在计算上是不可行的。在这项工作中,我们描述了一种经验贝叶斯(EB)方法来估计最大化边际后验的超参数,即数据条件下超参数的概率密度,然后我们使用估计的超参数来计算未知逆参数的后验。对于无法计算先验协方差矩阵的平方根和逆的问题,我们描述了一种基于广义Golub-Kahan双对角化的方法来近似边际后验,并寻求使近似边际后验最小的超参数。地震和大气层析成像的数值结果证明了该方法的准确性、鲁棒性和潜在的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
A difference finite element method based on nonconforming finite element methods for 3D elliptic problems An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform On convergence of the generalized Lanczos trust-region method for trust-region subproblems Unfitted finite element method for the quad-curl interface problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1