Microstructure-based simulation of constitutive behaviors in friction stir additive manufacturing

IF 7.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Mechanical Sciences Pub Date : 2024-11-30 DOI:10.1016/j.ijmecsci.2024.109863
Jianyu Li, Binbin Wang, Lars-Erik Lindgren, Zhao Zhang
{"title":"Microstructure-based simulation of constitutive behaviors in friction stir additive manufacturing","authors":"Jianyu Li, Binbin Wang, Lars-Erik Lindgren, Zhao Zhang","doi":"10.1016/j.ijmecsci.2024.109863","DOIUrl":null,"url":null,"abstract":"The Complex reheating phenomenon during friction stir additive manufacturing (FSAM) has a significant impact on the microstructural evolution. This, in turn, affects its mechanical properties. A flow stress model including the precipitate, solid solution and dislocation density evolution was proposed to reveal the relationship between the microstructure and constitutive behavior in FSAM of Al-Mg-Si alloys. The microstructure and mechanical properties of single-layer and multi-layer FSAM were investigated using experimental and numerical simulation methods. The results revealed that during the first reheating process, the precipitates exhibited dissolution and coarsening behavior in the heating stage. In the third reheating process, precipitates were generated during the heating stage because of the lower temperature. The multiple reheating process in FSAM promoted the generation of precipitates in the stirring zone. This phenomenon increased the yield strength from 183.46 MPa to 189.95 MPa. Meanwhile, the precipitate nucleation and growth during reheating process depleted the concentrations of Si and Mg in the matrix. A comparison of the stress-strain curves before and after the reheating process, revealed that the reheating process reduces the net flow stress in the plastic deformation stage. A decrease in the concentration of solid solution elements caused a decrease in the statistically stored dislocation density, and thereby, decreased the net flow stress.","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"213 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijmecsci.2024.109863","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Complex reheating phenomenon during friction stir additive manufacturing (FSAM) has a significant impact on the microstructural evolution. This, in turn, affects its mechanical properties. A flow stress model including the precipitate, solid solution and dislocation density evolution was proposed to reveal the relationship between the microstructure and constitutive behavior in FSAM of Al-Mg-Si alloys. The microstructure and mechanical properties of single-layer and multi-layer FSAM were investigated using experimental and numerical simulation methods. The results revealed that during the first reheating process, the precipitates exhibited dissolution and coarsening behavior in the heating stage. In the third reheating process, precipitates were generated during the heating stage because of the lower temperature. The multiple reheating process in FSAM promoted the generation of precipitates in the stirring zone. This phenomenon increased the yield strength from 183.46 MPa to 189.95 MPa. Meanwhile, the precipitate nucleation and growth during reheating process depleted the concentrations of Si and Mg in the matrix. A comparison of the stress-strain curves before and after the reheating process, revealed that the reheating process reduces the net flow stress in the plastic deformation stage. A decrease in the concentration of solid solution elements caused a decrease in the statistically stored dislocation density, and thereby, decreased the net flow stress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于显微组织的搅拌摩擦增材制造本构行为模拟
搅拌摩擦增材制造(FSAM)过程中复杂的再加热现象对微观组织演变有重要影响。这反过来又影响了它的机械性能。建立了包括析出相、固溶体和位错密度演变在内的流动应力模型,揭示了Al-Mg-Si合金FSAM组织与本构行为的关系。采用实验和数值模拟方法研究了单层和多层FSAM的微观结构和力学性能。结果表明:在第一次再加热过程中,析出相在加热阶段表现出溶解和粗化行为;在第三次再加热过程中,由于温度较低,在加热阶段产生了沉淀。FSAM的多次再加热过程促进了搅拌区析出相的生成。这种现象使屈服强度由183.46 MPa提高到189.95 MPa。同时,再加热过程中析出相的形核和生长使基体中Si和Mg的浓度降低。再加热前后的应力应变曲线对比表明,再加热降低了塑性变形阶段的净流动应力。固溶体元素浓度的降低导致统计上存储的位错密度的降低,从而降低了净流动应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mechanical Sciences
International Journal of Mechanical Sciences 工程技术-工程:机械
CiteScore
12.80
自引率
17.80%
发文量
769
审稿时长
19 days
期刊介绍: The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering. The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture). Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content. In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.
期刊最新文献
Vibration transmission in lubricated piston-liner systems: Experimental and multi-physics coupled analysis Modeling of CFRP hybrid lap joints via energy-based 2D framework Exploring deformation mechanisms in a refractory high entropy alloy (MoNbTaW) Vibration control in bolted joints with locally resonant metamaterials Unveiling self-propelled ascent in granular media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1