Nonunitary Coupled Cluster Enabled by Midcircuit Measurements on Quantum Computers.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-12-24 Epub Date: 2024-12-08 DOI:10.1021/acs.jctc.4c00837
Alexandre Fleury, James Brown, Erika Lloyd, Maritza Hernandez, Isaac H Kim
{"title":"Nonunitary Coupled Cluster Enabled by Midcircuit Measurements on Quantum Computers.","authors":"Alexandre Fleury, James Brown, Erika Lloyd, Maritza Hernandez, Isaac H Kim","doi":"10.1021/acs.jctc.4c00837","DOIUrl":null,"url":null,"abstract":"<p><p>Many quantum algorithms rely on a quality initial state for optimal performance. Preparing an initial state for specific applications can considerably reduce the cost of probabilistic algorithms such as the well studied quantum phase estimation (QPE). Fortunately, in the application space of quantum chemistry, generating approximate wave functions for molecular systems is well studied, and quantum computing algorithms stand to benefit from importing these classical methods directly into a quantum circuit. In this work, we propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers, by incorporating midcircuit measurements into the circuit construction. Currently, the most well studied state preparation method for quantum chemistry on quantum computers is the variational quantum eigensolver (VQE) with a unitary-CC with single- and double-electron excitation terms (UCCSD) ansatz whose operations are limited to unitary gates. We verify the accuracy of our state preparation protocol using midcircuit measurements by performing energy evaluation and state overlap computation for a set of small chemical systems. We further demonstrate that our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28 and 57% on average when compared against the standard VQE-UCCSD protocol.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"10807-10816"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many quantum algorithms rely on a quality initial state for optimal performance. Preparing an initial state for specific applications can considerably reduce the cost of probabilistic algorithms such as the well studied quantum phase estimation (QPE). Fortunately, in the application space of quantum chemistry, generating approximate wave functions for molecular systems is well studied, and quantum computing algorithms stand to benefit from importing these classical methods directly into a quantum circuit. In this work, we propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers, by incorporating midcircuit measurements into the circuit construction. Currently, the most well studied state preparation method for quantum chemistry on quantum computers is the variational quantum eigensolver (VQE) with a unitary-CC with single- and double-electron excitation terms (UCCSD) ansatz whose operations are limited to unitary gates. We verify the accuracy of our state preparation protocol using midcircuit measurements by performing energy evaluation and state overlap computation for a set of small chemical systems. We further demonstrate that our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28 and 57% on average when compared against the standard VQE-UCCSD protocol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Directed Electrostatics Strategy Integrated as a Graph Neural Network Approach for Accelerated Cluster Structure Prediction. Multiscale Responsive Kinetic Modeling: Quantifying Biomolecular Reaction Flux under Varying Electrochemical Conditions. Assessing Nonadiabatic Dynamics Methods in Long Timescales. How the Piecewise-Linearity Requirement for the Density Affects Quantities in the Kohn-Sham System. Coil-Library-Derived Amino-Acid-Specific Side-Chain χ1 Dihedral Angle Potentials for AMBER-Type Protein Force Field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1