In Vitro Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation.

IF 2 4区 医学 Q3 RESPIRATORY SYSTEM Journal of Aerosol Medicine and Pulmonary Drug Delivery Pub Date : 2024-12-09 DOI:10.1089/jamp.2024.0047
Jie Li, Caylie A Sheridan, Osama Alanazi, James B Fink
{"title":"<i>In Vitro</i> Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation.","authors":"Jie Li, Caylie A Sheridan, Osama Alanazi, James B Fink","doi":"10.1089/jamp.2024.0047","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Aerosol delivery may be enhanced by utilizing an inspiration-synchronized nebulization mode, where nebulization occurs only during inspiration. This study aimed to compare aerosol delivery of albuterol via a prototype of an inspiration-synchronized vibrating mesh nebulizer (VMN) versus continuous VMN during invasive mechanical ventilation. <b><i>Methods:</i></b> A critical care ventilator equipped with a heated-wire circuit to deliver adult parameters was attached to an endotracheal tube (ETT), a collection filter, and a test lung. The nebulizer was placed at the humidifier's inlet, inspiratory limb at the Y-piece, and between the Y-piece and ETT. Conventional VMNs producing standard size aerosol particles (Solo; Aerogen Ltd) were compared with prototype small-particle VMNs (Aerogen Pharma) in both inspiration-synchronization and continuous modes. In each run, 1 mL of albuterol (2.5 mg) was used (<i>n</i> = 5). The drug was eluted from the collection filter and assayed with UV spectrophotometry (276 nm). <b><i>Results:</i></b> The inhaled dose with inspiration-synchronization mode was 1.4 to 3.6 times that with the continuous mode, regardless of nebulizer positions (all <i>p</i> < 0.001). The small-particle VMN delivered an 8%-69% greater inhaled dose than the conventional VMN (Solo), regardless of the nebulizer placement or aerosol generation mode (all <i>p</i> < 0.001). The highest inhaled dose (50%-60%) with the inspiration-synchronized VMN was observed when it was placed at the ETT (all <i>p</i> < 0.001), whereas the continuous VMN performed better when positioned near the humidifier, with an inhaled dose of 21%-37% (<i>p</i> < 0.001). <b><i>Conclusion:</i></b> The inspiration-synchronized VMN delivered a greater inhaled dose than continuous VMN, irrespective of nebulizer placement. The prototype VMN producing smaller aerosol particles resulted in a greater inhaled dose than the conventional VMN (Solo), regardless of placement or aerosol generation modes. The inspiration-synchronized VMN achieved the highest delivery when placed close to the airway, whereas the continuous VMN delivered the most when positioned near the ventilator.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2024.0047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Aerosol delivery may be enhanced by utilizing an inspiration-synchronized nebulization mode, where nebulization occurs only during inspiration. This study aimed to compare aerosol delivery of albuterol via a prototype of an inspiration-synchronized vibrating mesh nebulizer (VMN) versus continuous VMN during invasive mechanical ventilation. Methods: A critical care ventilator equipped with a heated-wire circuit to deliver adult parameters was attached to an endotracheal tube (ETT), a collection filter, and a test lung. The nebulizer was placed at the humidifier's inlet, inspiratory limb at the Y-piece, and between the Y-piece and ETT. Conventional VMNs producing standard size aerosol particles (Solo; Aerogen Ltd) were compared with prototype small-particle VMNs (Aerogen Pharma) in both inspiration-synchronization and continuous modes. In each run, 1 mL of albuterol (2.5 mg) was used (n = 5). The drug was eluted from the collection filter and assayed with UV spectrophotometry (276 nm). Results: The inhaled dose with inspiration-synchronization mode was 1.4 to 3.6 times that with the continuous mode, regardless of nebulizer positions (all p < 0.001). The small-particle VMN delivered an 8%-69% greater inhaled dose than the conventional VMN (Solo), regardless of the nebulizer placement or aerosol generation mode (all p < 0.001). The highest inhaled dose (50%-60%) with the inspiration-synchronized VMN was observed when it was placed at the ETT (all p < 0.001), whereas the continuous VMN performed better when positioned near the humidifier, with an inhaled dose of 21%-37% (p < 0.001). Conclusion: The inspiration-synchronized VMN delivered a greater inhaled dose than continuous VMN, irrespective of nebulizer placement. The prototype VMN producing smaller aerosol particles resulted in a greater inhaled dose than the conventional VMN (Solo), regardless of placement or aerosol generation modes. The inspiration-synchronized VMN achieved the highest delivery when placed close to the airway, whereas the continuous VMN delivered the most when positioned near the ventilator.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
2.90%
发文量
34
审稿时长
>12 weeks
期刊介绍: Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient. Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes: Pulmonary drug delivery Airway reactivity and asthma treatment Inhalation of particles and gases in the respiratory tract Toxic effects of inhaled agents Aerosols as tools for studying basic physiologic phenomena.
期刊最新文献
In Vitro Comparison of Inspiration-Synchronized and Continuous Vibrating Mesh Nebulizer During Adult Invasive Mechanical Ventilation. Prospects of Inhalable Formulations of Conventionally Administered Repurposed Drugs for Adjunctive Treatment of Drug-Resistant Tuberculosis: Supporting Evidence from Clinical Trials and Cohort Studies. Scale-Up and Postapproval Changes in Orally Inhaled Drug Products: Scientific and Regulatory Considerations. Assessing Human Lung Pharmacokinetics Using Exhaled Breath Particles. Demographic and Asthma-Related Characteristics of Asthmatics Using Pressurized Metered Dose Inhalers and Dry Powder Inhalers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1