{"title":"Drug Repurposing Using Hypergraph Embedding Based on Common Therapeutic Targets of a Drug.","authors":"Hanieh Abbasi, Amir Lakizadeh","doi":"10.1089/cmb.2023.0427","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a new drug is a long and expensive process that typically takes 10-15 years and costs billions of dollars. This has led to an increasing interest in drug repositioning, which involves finding new therapeutic uses for existing drugs. Computational methods become an increasingly important tool for identifying associations between drugs and new diseases. Graph- and hypergraph-based approaches are a type of computational method that can be used to identify potential associations between drugs and new diseases. Here, we present a drug repurposing method based on hypergraph neural network for predicting drug-disease association in three stages. First, it constructs a heterogeneous graph that contains drug and disease nodes and links between them; in the second stage, it converts the heterogeneous simple graph to a hypergraph with only disease nodes. This is achieved by grouping diseases that use the same drug into a hyperedge. Indeed, all the diseases that are the common therapeutic goal of a drug are placed on a hyperedge. Finally, a graph neural network is used to predict drug-disease association based on the structure of the hypergraph. This model is more efficient than other methods because it uses a hypergraph to model relationships more effectively than graphs. Furthermore, it constructs the hypergraph using only a drug-disease association matrix, eliminating the need for extensive amounts of data. Experimental results show that the hypergraph-based approach effectively captures complex interrelationships between drugs and diseases, leading to improved accuracy of drug-disease association prediction compared to state-of-the-art methods.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0427","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a new drug is a long and expensive process that typically takes 10-15 years and costs billions of dollars. This has led to an increasing interest in drug repositioning, which involves finding new therapeutic uses for existing drugs. Computational methods become an increasingly important tool for identifying associations between drugs and new diseases. Graph- and hypergraph-based approaches are a type of computational method that can be used to identify potential associations between drugs and new diseases. Here, we present a drug repurposing method based on hypergraph neural network for predicting drug-disease association in three stages. First, it constructs a heterogeneous graph that contains drug and disease nodes and links between them; in the second stage, it converts the heterogeneous simple graph to a hypergraph with only disease nodes. This is achieved by grouping diseases that use the same drug into a hyperedge. Indeed, all the diseases that are the common therapeutic goal of a drug are placed on a hyperedge. Finally, a graph neural network is used to predict drug-disease association based on the structure of the hypergraph. This model is more efficient than other methods because it uses a hypergraph to model relationships more effectively than graphs. Furthermore, it constructs the hypergraph using only a drug-disease association matrix, eliminating the need for extensive amounts of data. Experimental results show that the hypergraph-based approach effectively captures complex interrelationships between drugs and diseases, leading to improved accuracy of drug-disease association prediction compared to state-of-the-art methods.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases