Drug Repurposing Using Hypergraph Embedding Based on Common Therapeutic Targets of a Drug.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-12-09 DOI:10.1089/cmb.2023.0427
Hanieh Abbasi, Amir Lakizadeh
{"title":"Drug Repurposing Using Hypergraph Embedding Based on Common Therapeutic Targets of a Drug.","authors":"Hanieh Abbasi, Amir Lakizadeh","doi":"10.1089/cmb.2023.0427","DOIUrl":null,"url":null,"abstract":"<p><p>Developing a new drug is a long and expensive process that typically takes 10-15 years and costs billions of dollars. This has led to an increasing interest in drug repositioning, which involves finding new therapeutic uses for existing drugs. Computational methods become an increasingly important tool for identifying associations between drugs and new diseases. Graph- and hypergraph-based approaches are a type of computational method that can be used to identify potential associations between drugs and new diseases. Here, we present a drug repurposing method based on hypergraph neural network for predicting drug-disease association in three stages. First, it constructs a heterogeneous graph that contains drug and disease nodes and links between them; in the second stage, it converts the heterogeneous simple graph to a hypergraph with only disease nodes. This is achieved by grouping diseases that use the same drug into a hyperedge. Indeed, all the diseases that are the common therapeutic goal of a drug are placed on a hyperedge. Finally, a graph neural network is used to predict drug-disease association based on the structure of the hypergraph. This model is more efficient than other methods because it uses a hypergraph to model relationships more effectively than graphs. Furthermore, it constructs the hypergraph using only a drug-disease association matrix, eliminating the need for extensive amounts of data. Experimental results show that the hypergraph-based approach effectively captures complex interrelationships between drugs and diseases, leading to improved accuracy of drug-disease association prediction compared to state-of-the-art methods.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0427","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Developing a new drug is a long and expensive process that typically takes 10-15 years and costs billions of dollars. This has led to an increasing interest in drug repositioning, which involves finding new therapeutic uses for existing drugs. Computational methods become an increasingly important tool for identifying associations between drugs and new diseases. Graph- and hypergraph-based approaches are a type of computational method that can be used to identify potential associations between drugs and new diseases. Here, we present a drug repurposing method based on hypergraph neural network for predicting drug-disease association in three stages. First, it constructs a heterogeneous graph that contains drug and disease nodes and links between them; in the second stage, it converts the heterogeneous simple graph to a hypergraph with only disease nodes. This is achieved by grouping diseases that use the same drug into a hyperedge. Indeed, all the diseases that are the common therapeutic goal of a drug are placed on a hyperedge. Finally, a graph neural network is used to predict drug-disease association based on the structure of the hypergraph. This model is more efficient than other methods because it uses a hypergraph to model relationships more effectively than graphs. Furthermore, it constructs the hypergraph using only a drug-disease association matrix, eliminating the need for extensive amounts of data. Experimental results show that the hypergraph-based approach effectively captures complex interrelationships between drugs and diseases, leading to improved accuracy of drug-disease association prediction compared to state-of-the-art methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于药物共同治疗靶点的超图嵌入药物再利用。
开发一种新药是一个漫长而昂贵的过程,通常需要10-15年的时间,耗资数十亿美元。这导致了对药物重新定位的兴趣日益增加,这涉及到为现有药物寻找新的治疗用途。计算方法成为识别药物和新疾病之间联系的越来越重要的工具。基于图和超图的方法是一种可用于识别药物和新疾病之间潜在关联的计算方法。在此,我们提出了一种基于超图神经网络的药物再利用方法,用于预测药物-疾病关联的三个阶段。首先,它构建了一个包含药物和疾病节点以及它们之间的链接的异构图;在第二阶段,将异构简单图转换为只有疾病节点的超图。这是通过将使用相同药物的疾病分组到一个超边缘来实现的。事实上,所有作为药物共同治疗目标的疾病都被置于超边缘。最后,基于超图的结构,利用图神经网络对药物-疾病关联进行预测。此模型比其他方法更有效,因为它使用超图比图更有效地建模关系。此外,它仅使用药物-疾病关联矩阵构建超图,从而消除了对大量数据的需要。实验结果表明,基于超图的方法有效地捕获了药物和疾病之间复杂的相互关系,与最先进的方法相比,提高了药物-疾病关联预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
AFMDD: Analyzing Functional Connectivity Feature of Major Depressive Disorder by Graph Neural Network-Based Model. Pathway Realizability in Chemical Networks. A Joint Bayesian Model for Change-Points and Heteroskedasticity Applied to the Canadian Longitudinal Study on Aging. Advances in Estimating Level-1 Phylogenetic Networks from Unrooted SNPs. CLHGNNMDA: Hypergraph Neural Network Model Enhanced by Contrastive Learning for miRNA-Disease Association Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1