Emily Hunt, Russell W Bradford, David J Booth, Cameron Doak, Toby A Patterson, Victor M Peddemors
{"title":"Ontogenetic change in body shape for white sharks, Carcharodon carcharias, in Australian waters.","authors":"Emily Hunt, Russell W Bradford, David J Booth, Cameron Doak, Toby A Patterson, Victor M Peddemors","doi":"10.1111/jfb.16016","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of how biological shape changes across ontogeny can provide us with valuable information on how species adapt behaviorally, physiologically, and ecologically. The white shark Carcharodon carcharias is one of the largest and most widely distributed apex predators globally, yet an understanding of ontogenetic changes in body shape and relative scaling of length and weight measures is limited, especially in relation to foraging ecology. Through analysis of a suite of shape-related metrics, we identified ontogenetic patterns of scaling throughout development. Isometric growth was exhibited for most metrics, failing to show a significant deviation from an isometric slope of 1.0 for length-length relationships, and 3.0 for weight-length relationships. The most notable difference from this trend was the negative allometric growth observed for the upper caudal-fin lobe length, trunk length, and the mouth length. The surface area of the fins also presented a strong, positive relationship with precaudal length (PCL) and the girth at the pectoral fin. Negative allometric growth was exhibited for three of the fins (pectoral, upper caudal fin, and lower caudal fin) against PCL, exhibiting a significant deviation from the expected isometric growth of 2.0 for area-length relationships. There were no significant differences in morphometric relationships between geographic regions within Australia that samples were collected from. No differences between the sexes were identified; however, this may be an artifact of the lack of mature animal samples. Conversely, life stage was found to have a significant effect on the girth-length and weight-length relationships. The development of regression equations for morphometric measures allows the assessment of white shark body condition and may serve as an assessment tool to understand the potential impacts of human-induced environmental change on white sharks.</p>","PeriodicalId":15794,"journal":{"name":"Journal of fish biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of fish biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jfb.16016","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of how biological shape changes across ontogeny can provide us with valuable information on how species adapt behaviorally, physiologically, and ecologically. The white shark Carcharodon carcharias is one of the largest and most widely distributed apex predators globally, yet an understanding of ontogenetic changes in body shape and relative scaling of length and weight measures is limited, especially in relation to foraging ecology. Through analysis of a suite of shape-related metrics, we identified ontogenetic patterns of scaling throughout development. Isometric growth was exhibited for most metrics, failing to show a significant deviation from an isometric slope of 1.0 for length-length relationships, and 3.0 for weight-length relationships. The most notable difference from this trend was the negative allometric growth observed for the upper caudal-fin lobe length, trunk length, and the mouth length. The surface area of the fins also presented a strong, positive relationship with precaudal length (PCL) and the girth at the pectoral fin. Negative allometric growth was exhibited for three of the fins (pectoral, upper caudal fin, and lower caudal fin) against PCL, exhibiting a significant deviation from the expected isometric growth of 2.0 for area-length relationships. There were no significant differences in morphometric relationships between geographic regions within Australia that samples were collected from. No differences between the sexes were identified; however, this may be an artifact of the lack of mature animal samples. Conversely, life stage was found to have a significant effect on the girth-length and weight-length relationships. The development of regression equations for morphometric measures allows the assessment of white shark body condition and may serve as an assessment tool to understand the potential impacts of human-induced environmental change on white sharks.
期刊介绍:
The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fishes and fisheries research, both fresh water and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish.