{"title":"An Evaluation of Zero-Cost Proxies - from Neural Architecture Performance Prediction to Model Robustness","authors":"Jovita Lukasik, Michael Moeller, Margret Keuper","doi":"10.1007/s11263-024-02265-7","DOIUrl":null,"url":null,"abstract":"<p>Zero-cost proxies are nowadays frequently studied and used to search for neural architectures. They show an impressive ability to predict the performance of architectures by making use of their untrained weights. These techniques allow for immense search speed-ups. So far the joint search for well performing and robust architectures has received much less attention in the field of NAS. Therefore, the main focus of zero-cost proxies is the clean accuracy of architectures, whereas the model robustness should play an evenly important part. In this paper, we analyze the ability of common zero-cost proxies to serve as performance predictors for robustness in the popular NAS-Bench-201 search space. We are interested in the single prediction task for robustness and the joint multi-objective of clean and robust accuracy. We further analyze the feature importance of the proxies and show that predicting the robustness makes the prediction task from existing zero-cost proxies more challenging. As a result, the joint consideration of several proxies becomes necessary to predict a model’s robustness while the clean accuracy can be regressed from a single such feature. Our code is available at https://github.com/jovitalukasik/zcp_eval.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"47 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02265-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Zero-cost proxies are nowadays frequently studied and used to search for neural architectures. They show an impressive ability to predict the performance of architectures by making use of their untrained weights. These techniques allow for immense search speed-ups. So far the joint search for well performing and robust architectures has received much less attention in the field of NAS. Therefore, the main focus of zero-cost proxies is the clean accuracy of architectures, whereas the model robustness should play an evenly important part. In this paper, we analyze the ability of common zero-cost proxies to serve as performance predictors for robustness in the popular NAS-Bench-201 search space. We are interested in the single prediction task for robustness and the joint multi-objective of clean and robust accuracy. We further analyze the feature importance of the proxies and show that predicting the robustness makes the prediction task from existing zero-cost proxies more challenging. As a result, the joint consideration of several proxies becomes necessary to predict a model’s robustness while the clean accuracy can be regressed from a single such feature. Our code is available at https://github.com/jovitalukasik/zcp_eval.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.