Photosynthetic Energy Transfer: Missing in Action (Detected Spectroscopy)?

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2024-12-09 DOI:10.1021/acs.jpclett.4c02665
Ariba Javed, Julian Lüttig, Kateřina Charvátová, Stephanie E. Sanders, Rhiannon Willow, Muyi Zhang, Alastair T. Gardiner, Pavel Malý, Jennifer P. Ogilvie
{"title":"Photosynthetic Energy Transfer: Missing in Action (Detected Spectroscopy)?","authors":"Ariba Javed, Julian Lüttig, Kateřina Charvátová, Stephanie E. Sanders, Rhiannon Willow, Muyi Zhang, Alastair T. Gardiner, Pavel Malý, Jennifer P. Ogilvie","doi":"10.1021/acs.jpclett.4c02665","DOIUrl":null,"url":null,"abstract":"In recent years, action-detected ultrafast spectroscopies have gained popularity offering distinct advantages over their coherently detected counterparts, such as spatially resolved and operando measurements with high sensitivity. However, there are also fundamental limitations connected to the process of signal generation in action-detected experiments. Here we perform fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) of the light-harvesting II (LH2) complex from purple bacteria. We demonstrate that the B800–B850 energy transfer process in LH2 is weak but observable in F-2DES, unlike in coherently detected 2DES where the energy transfer is visible with 100% contrast. We explain the weak signatures using a disordered excitonic model that accounts for experimental conditions. We further derive a general formula for the presence of excited-state signals in multichromophoric aggregates, dependent on the aggregate geometry, size, excitonic coupling and disorder. We find that the prominence of excited-state dynamics in action-detected spectroscopy offers a unique probe of excitonic delocalization in multichromophoric systems.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"19 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02665","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, action-detected ultrafast spectroscopies have gained popularity offering distinct advantages over their coherently detected counterparts, such as spatially resolved and operando measurements with high sensitivity. However, there are also fundamental limitations connected to the process of signal generation in action-detected experiments. Here we perform fluorescence-detected two-dimensional electronic spectroscopy (F-2DES) of the light-harvesting II (LH2) complex from purple bacteria. We demonstrate that the B800–B850 energy transfer process in LH2 is weak but observable in F-2DES, unlike in coherently detected 2DES where the energy transfer is visible with 100% contrast. We explain the weak signatures using a disordered excitonic model that accounts for experimental conditions. We further derive a general formula for the presence of excited-state signals in multichromophoric aggregates, dependent on the aggregate geometry, size, excitonic coupling and disorder. We find that the prominence of excited-state dynamics in action-detected spectroscopy offers a unique probe of excitonic delocalization in multichromophoric systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光合作用能量转移:行动中的缺失(检测光谱学)?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
GC-DFT-Based Dynamic Product Distribution Reveals Enhanced CO2-to-Methanol Electrocatalysis Durability by Heterogeneous CoPc Investigation of Transient Temperature Rising of Light-Harvesting Complex II by Nonradiative Heat Dissipation at the Protein Level Toward Collective Chemistry under Strong Light-Matter Coupling Defect Crystal Formation and Thermal-Induced Structural Ordering of Semicrystalline Copolymers Induced by Comonomer Inclusion/Exclusion Stacking Configurations of Triangular Au3 and Tetrahedral Au4 Units in Thiolate-Protected Gold Nanoclusters: Insights into Structural Stability and Growth Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1