A Learning Bayesian MAP Framework for Joint SAR Imaging and Target Detection

Hongyang An;Jianyu Yang;Yuping Xiao;Min Li;Haowen Zuo;Zhongyu Li;Wei Pu;Junjie Wu
{"title":"A Learning Bayesian MAP Framework for Joint SAR Imaging and Target Detection","authors":"Hongyang An;Jianyu Yang;Yuping Xiao;Min Li;Haowen Zuo;Zhongyu Li;Wei Pu;Junjie Wu","doi":"10.1109/TRS.2024.3497057","DOIUrl":null,"url":null,"abstract":"In synthetic aperture radar (SAR) information acquisition, target detection is often performed on the basis of the acquired radar images. Under low signal-to-clutter ratio (SCR) or low signal-to-noise ratio (SNR) conditions, detection by images is likely to cause loss of targets. To address this problem, we propose a joint imaging and target detection network based on Bayesian maximum a posteriori (MAP) estimation. The imaging and detection results are, respectively, defined as scene magnitude and detection label, and their joint probability distribution is used in place of the distribution of scene magnitudes. In the MAP estimation, the continuity feature of the detection label is merged into the optimization process, and the imaging and detection results are optimized alternately to get an iterative solution. The iterative solution is then unrolled into a network, which consists of three modules. We first utilize the unrolled fast iterative shrinkage thresholding algorithm (FISTA) method for the image formation module and then incorporate the detection label estimation module and distribution parameter updating module to learn the detection label and the function of distribution parameters. This approach applies prior information for both imaging and detection processes and enables automatic learning of parameters that are difficult to fit. Simulation experiments demonstrate that the method can simultaneously achieve imaging and target detection under strong clutter and strong noise conditions, showing superior performance in both aspects.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"1214-1228"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752515/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In synthetic aperture radar (SAR) information acquisition, target detection is often performed on the basis of the acquired radar images. Under low signal-to-clutter ratio (SCR) or low signal-to-noise ratio (SNR) conditions, detection by images is likely to cause loss of targets. To address this problem, we propose a joint imaging and target detection network based on Bayesian maximum a posteriori (MAP) estimation. The imaging and detection results are, respectively, defined as scene magnitude and detection label, and their joint probability distribution is used in place of the distribution of scene magnitudes. In the MAP estimation, the continuity feature of the detection label is merged into the optimization process, and the imaging and detection results are optimized alternately to get an iterative solution. The iterative solution is then unrolled into a network, which consists of three modules. We first utilize the unrolled fast iterative shrinkage thresholding algorithm (FISTA) method for the image formation module and then incorporate the detection label estimation module and distribution parameter updating module to learn the detection label and the function of distribution parameters. This approach applies prior information for both imaging and detection processes and enables automatic learning of parameters that are difficult to fit. Simulation experiments demonstrate that the method can simultaneously achieve imaging and target detection under strong clutter and strong noise conditions, showing superior performance in both aspects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于联合合成孔径雷达成像和目标探测的学习贝叶斯 MAP 框架
在合成孔径雷达(SAR)信息采集中,目标检测往往是根据采集到的雷达图像进行的。在低信杂比(SCR)或低信噪比(SNR)条件下,图像检测容易导致目标丢失。为了解决这一问题,我们提出了一种基于贝叶斯最大后验估计(MAP)的联合成像和目标检测网络。将成像结果和检测结果分别定义为场景大小和检测标签,用它们的联合概率分布代替场景大小的分布。在MAP估计中,将检测标签的连续性特征融合到优化过程中,对成像和检测结果进行交替优化,得到迭代解。然后将迭代解展开成一个网络,该网络由三个模块组成。我们首先对图像形成模块采用了展开快速迭代收缩阈值算法(FISTA)方法,然后结合检测标签估计模块和分布参数更新模块来学习检测标签和分布参数的函数。这种方法将先验信息应用于成像和检测过程,并能够自动学习难以拟合的参数。仿真实验表明,该方法可以在强杂波和强噪声条件下同时实现成像和目标检测,在两方面都表现出较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1