Deep Time-Frequency Denoising Transform Defense for Spectrum Monitoring in Integrated Networks

IF 3.5 1区 计算机科学 Q1 Multidisciplinary Tsinghua Science and Technology Pub Date : 2024-12-09 DOI:10.26599/TST.2024.9010045
Sicheng Zhang;Yandie Yang;Songlin Yang;Juzhen Wang;Yun Lin
{"title":"Deep Time-Frequency Denoising Transform Defense for Spectrum Monitoring in Integrated Networks","authors":"Sicheng Zhang;Yandie Yang;Songlin Yang;Juzhen Wang;Yun Lin","doi":"10.26599/TST.2024.9010045","DOIUrl":null,"url":null,"abstract":"The Space-Air-Ground-Sea Integrated Networks (SAGSIN) significantly enhance global communication by merging satellite, aviation, terrestrial, and marine networks. Crucial to SAGSIN's functionality and security is spectrum monitoring using deep learning-based Automatic Modulation Classification (AMC), essential for processing and classifying complex modulation signals. However, these AMC models are susceptible to adversarial attacks. Thus, we introduce the Deep Time-Frequency Denoising Transformation (DTFDT) defense method to mitigate the impact of adversarial attacks. The DTFDT method is comprised of a deep denoising module and a transformation module. The denoising module maps signals into the time-frequency domain, amplifying the differences between benign and adversarial examples, aiding in the elimination of adversarial perturbations. Concurrently, the transformation module develops a learnable network, generating example-specific transformation matrices suited for signal data, which diminishes the effectiveness of attacks. Extensive evaluations on two datasets, RML2016.10a and DMRadio09.real, demonstrate the superior defense capabilities of DTFDT against various attacks.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"851-863"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786945","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786945/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The Space-Air-Ground-Sea Integrated Networks (SAGSIN) significantly enhance global communication by merging satellite, aviation, terrestrial, and marine networks. Crucial to SAGSIN's functionality and security is spectrum monitoring using deep learning-based Automatic Modulation Classification (AMC), essential for processing and classifying complex modulation signals. However, these AMC models are susceptible to adversarial attacks. Thus, we introduce the Deep Time-Frequency Denoising Transformation (DTFDT) defense method to mitigate the impact of adversarial attacks. The DTFDT method is comprised of a deep denoising module and a transformation module. The denoising module maps signals into the time-frequency domain, amplifying the differences between benign and adversarial examples, aiding in the elimination of adversarial perturbations. Concurrently, the transformation module develops a learnable network, generating example-specific transformation matrices suited for signal data, which diminishes the effectiveness of attacks. Extensive evaluations on two datasets, RML2016.10a and DMRadio09.real, demonstrate the superior defense capabilities of DTFDT against various attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合网络频谱监测的深时频降噪变换防御
天空地海一体化网络(SAGSIN)通过合并卫星、航空、陆地和海洋网络,显著增强了全球通信。对SAGSIN的功能和安全性至关重要的是使用基于深度学习的自动调制分类(AMC)进行频谱监测,这对于处理和分类复杂的调制信号至关重要。然而,这些AMC模型容易受到对抗性攻击。因此,我们引入了深度时频去噪变换(DTFDT)防御方法来减轻对抗性攻击的影响。该方法由深度去噪模块和变换模块组成。去噪模块将信号映射到时频域,放大良性和对抗样本之间的差异,帮助消除对抗扰动。同时,变换模块开发了一个可学习的网络,生成适合于信号数据的特定示例变换矩阵,从而降低了攻击的有效性。对两个数据集RML2016.10a和DMRadio09进行了广泛的评估。演示DTFDT对各种攻击的优越防御能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
期刊最新文献
Front Cover Contents Co-Design Enhanced Power Scheme and Trajectory Optimization of UAV-Enabled Data Collection from WSNs Optimizing Multimodal Data Queries in Data Lakes A Deep Learning-Based Ocular Structure Segmentation for Assisted Myasthenia Gravis Diagnosis from Facial Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1