B-CAVE: A Robust Online Time Series Change Point Detection Algorithm Based on the Between-Class Average and Variance Evaluation Approach

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-11-06 DOI:10.1109/TKDE.2024.3492339
Aditi Gupta;Adeiza James Onumanyi;Satyadev Ahlawat;Yamuna Prasad;Virendra Singh
{"title":"B-CAVE: A Robust Online Time Series Change Point Detection Algorithm Based on the Between-Class Average and Variance Evaluation Approach","authors":"Aditi Gupta;Adeiza James Onumanyi;Satyadev Ahlawat;Yamuna Prasad;Virendra Singh","doi":"10.1109/TKDE.2024.3492339","DOIUrl":null,"url":null,"abstract":"Change point detection (CPD) is a valuable technique in time series (TS) analysis, which allows for the automatic detection of abrupt variations within the TS. It is often useful in applications such as fault, anomaly, and intrusion detection systems. However, the inherent unpredictability and fluctuations in many real-time data sources pose a challenge for existing contemporary CPD techniques, leading to inconsistent performance across diverse real-time TS with varying characteristics. To address this challenge, we have developed a novel and robust online CPD algorithm constructed from the principle of discriminant analysis and based upon a newly proposed between-class average and variance evaluation approach, termed B-CAVE. Our B-CAVE algorithm features a unique change point measure, which has only one tunable parameter (i.e. the window size) in its computational process. We have also proposed a new evaluation metric that integrates time delay and the false alarm error towards effectively comparing the performance of different CPD methods in the literature. To validate the effectiveness of our method, we conducted experiments using both synthetic and real datasets, demonstrating the superior performance of the B-CAVE algorithm over other prominent existing techniques.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 1","pages":"75-88"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10745746/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Change point detection (CPD) is a valuable technique in time series (TS) analysis, which allows for the automatic detection of abrupt variations within the TS. It is often useful in applications such as fault, anomaly, and intrusion detection systems. However, the inherent unpredictability and fluctuations in many real-time data sources pose a challenge for existing contemporary CPD techniques, leading to inconsistent performance across diverse real-time TS with varying characteristics. To address this challenge, we have developed a novel and robust online CPD algorithm constructed from the principle of discriminant analysis and based upon a newly proposed between-class average and variance evaluation approach, termed B-CAVE. Our B-CAVE algorithm features a unique change point measure, which has only one tunable parameter (i.e. the window size) in its computational process. We have also proposed a new evaluation metric that integrates time delay and the false alarm error towards effectively comparing the performance of different CPD methods in the literature. To validate the effectiveness of our method, we conducted experiments using both synthetic and real datasets, demonstrating the superior performance of the B-CAVE algorithm over other prominent existing techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
B-CAVE:基于类间平均和方差评估方法的稳健在线时间序列变化点检测算法
变化点检测(CPD)是时间序列(TS)分析中的一项有价值的技术,它允许自动检测时间序列中的突变变化,通常用于故障、异常和入侵检测系统等应用。然而,许多实时数据源固有的不可预测性和波动性对现有的当代CPD技术构成了挑战,导致具有不同特征的各种实时TS的性能不一致。为了应对这一挑战,我们开发了一种新的鲁棒在线CPD算法,该算法基于判别分析原理,并基于新提出的类间平均和方差评估方法,称为B-CAVE。我们的B-CAVE算法具有独特的变化点度量,在其计算过程中只有一个可调参数(即窗口大小)。我们还提出了一种新的评估指标,该指标集成了时间延迟和虚警误差,以有效地比较文献中不同CPD方法的性能。为了验证我们方法的有效性,我们使用合成和真实数据集进行了实验,证明了B-CAVE算法优于其他重要的现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
2024 Reviewers List Web-FTP: A Feature Transferring-Based Pre-Trained Model for Web Attack Detection Network-to-Network: Self-Supervised Network Representation Learning via Position Prediction AEGK: Aligned Entropic Graph Kernels Through Continuous-Time Quantum Walks Contextual Inference From Sparse Shopping Transactions Based on Motif Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1