D-STACK: High Throughput DNN Inference by Effective Multiplexing and Spatio-Temporal Scheduling of GPUs

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-10-07 DOI:10.1109/TCC.2024.3476210
Aditya Dhakal;Sameer G. Kulkarni;K. K. Ramakrishnan
{"title":"D-STACK: High Throughput DNN Inference by Effective Multiplexing and Spatio-Temporal Scheduling of GPUs","authors":"Aditya Dhakal;Sameer G. Kulkarni;K. K. Ramakrishnan","doi":"10.1109/TCC.2024.3476210","DOIUrl":null,"url":null,"abstract":"Hardware accelerators such as GPUs are required for real-time, low latency inference with Deep Neural Networks (DNN). Providing inference services in the cloud can be resource intensive, and effectively utilizing accelerators in the cloud is important. Spatial multiplexing of the GPU, while limiting the GPU resources (GPU%) to each DNN to the right amount, leads to higher GPU utilization and higher inference throughput. Right-sizing the GPU for each DNN the optimal batching of requests to balance throughput and service level objectives (SLOs), and maximizing throughput by appropriately scheduling DNNs are still significant challenges.This article introduces a dynamic and fair spatio-temporal scheduler (D-STACK) for multiple DNNs to run in the GPU concurrently. We develop and validate a model that estimates the parallelism each DNN can utilize and a lightweight optimization formulation to find an efficient batch size for each DNN. Our holistic inference framework provides high throughput while meeting application SLOs. We compare D-STACK with other GPU multiplexing and scheduling methods (e.g., NVIDIA Triton, Clipper, Nexus), using popular DNN models. Our controlled experiments with multiplexing several popular DNN models achieve up to \n<inline-formula><tex-math>$1.6\\times$</tex-math></inline-formula>\n improvement in GPU utilization and up to \n<inline-formula><tex-math>$4\\times$</tex-math></inline-formula>\n improvement in inference throughput.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1344-1358"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10707184/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hardware accelerators such as GPUs are required for real-time, low latency inference with Deep Neural Networks (DNN). Providing inference services in the cloud can be resource intensive, and effectively utilizing accelerators in the cloud is important. Spatial multiplexing of the GPU, while limiting the GPU resources (GPU%) to each DNN to the right amount, leads to higher GPU utilization and higher inference throughput. Right-sizing the GPU for each DNN the optimal batching of requests to balance throughput and service level objectives (SLOs), and maximizing throughput by appropriately scheduling DNNs are still significant challenges.This article introduces a dynamic and fair spatio-temporal scheduler (D-STACK) for multiple DNNs to run in the GPU concurrently. We develop and validate a model that estimates the parallelism each DNN can utilize and a lightweight optimization formulation to find an efficient batch size for each DNN. Our holistic inference framework provides high throughput while meeting application SLOs. We compare D-STACK with other GPU multiplexing and scheduling methods (e.g., NVIDIA Triton, Clipper, Nexus), using popular DNN models. Our controlled experiments with multiplexing several popular DNN models achieve up to $1.6\times$ improvement in GPU utilization and up to $4\times$ improvement in inference throughput.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D-STACK:通过 GPU 的有效复用和时空调度实现高吞吐量 DNN 推理
使用深度神经网络(DNN)进行实时、低延迟推理需要gpu等硬件加速器。在云中提供推理服务可能是资源密集型的,因此有效地利用云中的加速器非常重要。GPU的空间复用在将每个DNN的GPU资源(GPU%)限制在合适的数量的同时,可以提高GPU的利用率和推理吞吐量。为每个DNN正确调整GPU大小,优化请求批处理以平衡吞吐量和服务水平目标(slo),以及通过适当调度DNN来最大化吞吐量仍然是重大挑战。本文介绍了一个动态的、公平的时空调度程序(D-STACK),用于多个dnn在GPU中并发运行。我们开发并验证了一个模型,该模型估计每个DNN可以利用的并行性,并使用轻量级优化公式为每个DNN找到有效的批大小。我们的整体推理框架在满足应用程序slo的同时提供高吞吐量。我们将D-STACK与其他GPU多路复用和调度方法(例如,NVIDIA Triton, Clipper, Nexus)进行比较,使用流行的DNN模型。我们对几种流行的DNN模型进行多路复用的对照实验,在GPU利用率方面提高了1.6倍,在推理吞吐量方面提高了4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations Group Formation and Sampling in Group-Based Hierarchical Federated Learning HEXO: Offloading Long-Running Compute- and Memory-Intensive Workloads on Low-Cost, Low-Power Embedded Systems Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1