CloudBrain-ReconAI: A Cloud Computing Platform for MRI Reconstruction and Radiologists’ Image Quality Evaluation

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-10-08 DOI:10.1109/TCC.2024.3476418
Yirong Zhou;Chen Qian;Jiayu Li;Zi Wang;Yu Hu;Biao Qu;Liuhong Zhu;Jianjun Zhou;Taishan Kang;Jianzhong Lin;Qing Hong;Jiyang Dong;Di Guo;Xiaobo Qu
{"title":"CloudBrain-ReconAI: A Cloud Computing Platform for MRI Reconstruction and Radiologists’ Image Quality Evaluation","authors":"Yirong Zhou;Chen Qian;Jiayu Li;Zi Wang;Yu Hu;Biao Qu;Liuhong Zhu;Jianjun Zhou;Taishan Kang;Jianzhong Lin;Qing Hong;Jiyang Dong;Di Guo;Xiaobo Qu","doi":"10.1109/TCC.2024.3476418","DOIUrl":null,"url":null,"abstract":"Efficient collaboration between engineers and radiologists is important for image reconstruction algorithm development and image quality evaluation in magnetic resonance imaging (MRI). Here, we develop CloudBrain-ReconAI, an online cloud computing platform, for algorithm deployment, fast and blind reader study. This platform supports online image reconstruction using state-of-the-art artificial intelligence and compressed sensing algorithms with applications for fast imaging (Cartesian and non-Cartesian sampling) and high-resolution diffusion imaging. Through visiting the website, radiologists can easily score and mark images. Then, automatic statistical analysis will be provided.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1359-1371"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10709649/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient collaboration between engineers and radiologists is important for image reconstruction algorithm development and image quality evaluation in magnetic resonance imaging (MRI). Here, we develop CloudBrain-ReconAI, an online cloud computing platform, for algorithm deployment, fast and blind reader study. This platform supports online image reconstruction using state-of-the-art artificial intelligence and compressed sensing algorithms with applications for fast imaging (Cartesian and non-Cartesian sampling) and high-resolution diffusion imaging. Through visiting the website, radiologists can easily score and mark images. Then, automatic statistical analysis will be provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云脑-ReconAI:用于核磁共振成像重建和放射医师图像质量评估的云计算平台
工程师和放射科医生之间的高效协作对于磁共振成像(MRI)图像重建算法的开发和图像质量评估至关重要。在这里,我们开发了一个在线云计算平台cloudbrain - recoai,用于算法部署,快速盲读研究。该平台支持使用最先进的人工智能和压缩感知算法进行在线图像重建,并应用于快速成像(笛卡尔和非笛卡尔采样)和高分辨率扩散成像。通过访问该网站,放射科医生可以轻松地对图像进行评分和标记。然后,将提供自动统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations Group Formation and Sampling in Group-Based Hierarchical Federated Learning HEXO: Offloading Long-Running Compute- and Memory-Intensive Workloads on Low-Cost, Low-Power Embedded Systems Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1