Structure–activity relationships of DNA nanocarriers based on the amphipathic cell penetrating peptide transportan 10†

Lucas Rodrigues de Mello, Tâmisa Seeko Bandeira Honda, Sang Won Han, Valeria Castelletto, Ian William Hamley, Ly Porosk, Ülo Langel and Emerson Rodrigo da Silva
{"title":"Structure–activity relationships of DNA nanocarriers based on the amphipathic cell penetrating peptide transportan 10†","authors":"Lucas Rodrigues de Mello, Tâmisa Seeko Bandeira Honda, Sang Won Han, Valeria Castelletto, Ian William Hamley, Ly Porosk, Ülo Langel and Emerson Rodrigo da Silva","doi":"10.1039/D4PM00065J","DOIUrl":null,"url":null,"abstract":"<p >Cell penetrating peptides (CPPs) have emerged as promising materials for the fabrication of synthetic nanovectors endowed with potential for improving the future landscape of gene therapy. A group of well-studied CPPs includes the transportan family, comprised of chimeric molecules combining segments derived from the antimicrobial wasp-venom mastoporan and the neuropeptide galanin. The success of these CPPs is supported by their effective use as the base for commercial peptide-based transfection reagents. Herein, we present a comprehensive study of the structure of peptiplexes formed between DNA fragments and transportan 10, a prototype example of amphipathic CPP. We conducted a thorough analysis of the self-aggregation of TP10, its secondary structure, and revealed details of its interaction with DNA. We employed atomic force microscopy-based nanospectroscopy to obtain single-particle data that revealed details of the conformations assumed by the peptide and DNA in the inner structure of nanoassemblies with different morphologies. Our structural results showed that TP10 exhibits self-aggregation capabilities and a strong propensity to assume α-helical conformations upon association with DNA strands. This behavior contrasts with that of prototype CPPs such as TAT-HIV and penetratin, potentially explaining why peptiplexes based on transportans demonstrate increased uptake compared to their cationic counterparts. Also, single-particle spectroscopy indicated that the secondary structure in peptiplexes is strongly dependent on the size and shape, reinforcing that controlled self-assembly is crucial for optimizing CPP-based nanotherapeutics. The peptiplexes were also evaluated for cell uptake efficiency and kinetics, revealing a logistic time–response increase in permeability, suggestive of cooperativeness. We anticipate that the findings presented here might contribute to refining structure–activity relationships of peptiplexes based on amphipathic CPPs, assisting the optimization of products based on this relevant class of CPPs with potential applications in therapeutic delivery systems.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 5","pages":" 976-993"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d4pm00065j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/pm/d4pm00065j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cell penetrating peptides (CPPs) have emerged as promising materials for the fabrication of synthetic nanovectors endowed with potential for improving the future landscape of gene therapy. A group of well-studied CPPs includes the transportan family, comprised of chimeric molecules combining segments derived from the antimicrobial wasp-venom mastoporan and the neuropeptide galanin. The success of these CPPs is supported by their effective use as the base for commercial peptide-based transfection reagents. Herein, we present a comprehensive study of the structure of peptiplexes formed between DNA fragments and transportan 10, a prototype example of amphipathic CPP. We conducted a thorough analysis of the self-aggregation of TP10, its secondary structure, and revealed details of its interaction with DNA. We employed atomic force microscopy-based nanospectroscopy to obtain single-particle data that revealed details of the conformations assumed by the peptide and DNA in the inner structure of nanoassemblies with different morphologies. Our structural results showed that TP10 exhibits self-aggregation capabilities and a strong propensity to assume α-helical conformations upon association with DNA strands. This behavior contrasts with that of prototype CPPs such as TAT-HIV and penetratin, potentially explaining why peptiplexes based on transportans demonstrate increased uptake compared to their cationic counterparts. Also, single-particle spectroscopy indicated that the secondary structure in peptiplexes is strongly dependent on the size and shape, reinforcing that controlled self-assembly is crucial for optimizing CPP-based nanotherapeutics. The peptiplexes were also evaluated for cell uptake efficiency and kinetics, revealing a logistic time–response increase in permeability, suggestive of cooperativeness. We anticipate that the findings presented here might contribute to refining structure–activity relationships of peptiplexes based on amphipathic CPPs, assisting the optimization of products based on this relevant class of CPPs with potential applications in therapeutic delivery systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于两亲性细胞穿透肽转运素 10† 的 DNA 纳米载体的结构-活性关系
细胞穿透肽(CPPs)已成为制造合成纳米载体的有前途的材料,具有改善未来基因治疗前景的潜力。一组经过充分研究的CPPs包括转运蛋白家族,由嵌合分子结合来自抗菌黄蜂毒液mastoporan和神经肽galanin的片段组成。这些cps的成功是由它们作为商业肽基转染试剂的有效基础所支持的。在此,我们对DNA片段和转运蛋白10之间形成的肽丛结构进行了全面的研究,转运蛋白10是两亲性CPP的一个原型。我们对TP10的自聚集及其二级结构进行了深入的分析,并揭示了其与DNA相互作用的细节。我们利用基于原子力显微镜的纳米光谱学获得了单粒子数据,揭示了不同形态的纳米组件内部结构中肽和DNA的构象细节。我们的结构结果表明,TP10具有自聚集能力,并且在与DNA链结合时具有很强的α-螺旋构象倾向。这种行为与原型cps(如TAT-HIV和穿透素)形成对比,这可能解释了为什么基于转运体的多肽复合物比阳离子多肽复合物表现出更多的摄取。此外,单粒子光谱研究表明,肽丛的二级结构强烈依赖于其大小和形状,这进一步表明,控制自组装对于优化基于磷酸腺苷的纳米疗法至关重要。多肽体也被评估为细胞摄取效率和动力学,揭示了一个逻辑时间响应增加的渗透性,提示合作。我们预计,本文的研究结果可能有助于完善基于两亲性CPPs的多肽复合物的结构-活性关系,帮助优化基于这类相关CPPs的产品,并在治疗递送系统中具有潜在的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Injectable sustained-release hydrogel for high-concentration antibody delivery† Strategies for beating the bitter taste of pharmaceutical formulations towards better therapeutic outcomes Back cover Dual-action antimicrobial surface coatings: methylene blue and quaternary ammonium cation conjugated silica nanoparticles†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1