Multilamellar nanovectors composed of microbial glycolipid–polylysine complexes for drug encapsulation†

Silvia Alonso-de-Castro, Sergio Oliveira Formoso, Chloé Seyrig, Korin Ozkaya, Julien Dumont, Luisa Riancho, Javier Perez, Christophe Hélary and Niki Baccile
{"title":"Multilamellar nanovectors composed of microbial glycolipid–polylysine complexes for drug encapsulation†","authors":"Silvia Alonso-de-Castro, Sergio Oliveira Formoso, Chloé Seyrig, Korin Ozkaya, Julien Dumont, Luisa Riancho, Javier Perez, Christophe Hélary and Niki Baccile","doi":"10.1039/D4PM00163J","DOIUrl":null,"url":null,"abstract":"<p >This study addresses the potential use of single-glucose microbial amphiphiles as pohospholipid-free drug carriers. Microbial amphiphiles, also known as biosurfactants, are molecules obtained from the fermentation of bacteria, fungi or yeast and are largely studied for their antimicrobial, cleaning or anti-pollution potential. However, recent understanding of their self-assembly properties combined with their interactions with macromolecules suggests broader potential applications, one being the phospholipid-free formulation of drugs. In this study, we demonstrate that this class of bio-based molecules can be directly used to design colloidally-stable vesicular carriers for hydrophobic drugs, without employing phospholipid supports, and that the actives can be delivered to human cells. In this study, multilamellar wall vesicles (MLWVs) have been synthesised using a microbial glycolipid amphiphile and poly-L-lysine, held together by electrostatic attractive interactions. Curcumin, a highly lipophilic molecule, was used as a natural drug model to evaluate the present colloidal system as a potential nanocarrier. The cell uptake of the curcumin-loaded nanocarriers was significantly higher for HeLa cells (50%) compared to normal human dermal fibroblasts (35%) and THP-1-derived macrophages (20%). The cytotoxic effect of delivered curcumin or other pharmaceuticals (doxorubicin, docetaxel, paclitaxel) was higher in HeLa cells as the cell viability was reduced by 50%.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 5","pages":" 1008-1020"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d4pm00163j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/pm/d4pm00163j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the potential use of single-glucose microbial amphiphiles as pohospholipid-free drug carriers. Microbial amphiphiles, also known as biosurfactants, are molecules obtained from the fermentation of bacteria, fungi or yeast and are largely studied for their antimicrobial, cleaning or anti-pollution potential. However, recent understanding of their self-assembly properties combined with their interactions with macromolecules suggests broader potential applications, one being the phospholipid-free formulation of drugs. In this study, we demonstrate that this class of bio-based molecules can be directly used to design colloidally-stable vesicular carriers for hydrophobic drugs, without employing phospholipid supports, and that the actives can be delivered to human cells. In this study, multilamellar wall vesicles (MLWVs) have been synthesised using a microbial glycolipid amphiphile and poly-L-lysine, held together by electrostatic attractive interactions. Curcumin, a highly lipophilic molecule, was used as a natural drug model to evaluate the present colloidal system as a potential nanocarrier. The cell uptake of the curcumin-loaded nanocarriers was significantly higher for HeLa cells (50%) compared to normal human dermal fibroblasts (35%) and THP-1-derived macrophages (20%). The cytotoxic effect of delivered curcumin or other pharmaceuticals (doxorubicin, docetaxel, paclitaxel) was higher in HeLa cells as the cell viability was reduced by 50%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物糖脂-聚赖氨酸复合物组成的多层纳米载体用于药物包封
本研究探讨了单葡萄糖微生物两亲菌作为无磷脂药物载体的潜在用途。微生物两亲体,也被称为生物表面活性剂,是从细菌、真菌或酵母发酵中获得的分子,因其抗菌、清洁或抗污染的潜力而被广泛研究。然而,最近对它们的自组装特性及其与大分子的相互作用的理解表明了更广泛的潜在应用,其中一个是无磷脂的药物配方。在这项研究中,我们证明了这类生物基分子可以直接用于为疏水药物设计胶体稳定的囊泡载体,而不使用磷脂支持,并且活性可以传递到人体细胞中。在这项研究中,利用微生物糖脂两亲体和聚l -赖氨酸合成了多层壁泡(MLWVs),并通过静电吸引相互作用结合在一起。姜黄素是一种高度亲脂性的分子,被用作天然药物模型来评估目前的胶体系统作为潜在的纳米载体。与正常人真皮成纤维细胞(35%)和thp -1来源的巨噬细胞(20%)相比,HeLa细胞对姜黄素负载纳米载体的细胞摄取(50%)明显更高。在HeLa细胞中,姜黄素或其他药物(阿霉素、多西紫杉醇、紫杉醇)的细胞毒性作用更高,因为细胞活力降低了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Injectable sustained-release hydrogel for high-concentration antibody delivery† Strategies for beating the bitter taste of pharmaceutical formulations towards better therapeutic outcomes Back cover Dual-action antimicrobial surface coatings: methylene blue and quaternary ammonium cation conjugated silica nanoparticles†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1