Toxic Effects of Tire Wear Particles on Microcystis aeruginosa

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-12-10 DOI:10.1007/s11270-024-07684-3
Lu Cui, Zizhen Zhou, Jiaqiang Liu, Qian Ding, Yangyang Yang, Vezhenkova Irina, Xisheng Liu, Weiyi Xia
{"title":"Toxic Effects of Tire Wear Particles on Microcystis aeruginosa","authors":"Lu Cui,&nbsp;Zizhen Zhou,&nbsp;Jiaqiang Liu,&nbsp;Qian Ding,&nbsp;Yangyang Yang,&nbsp;Vezhenkova Irina,&nbsp;Xisheng Liu,&nbsp;Weiyi Xia","doi":"10.1007/s11270-024-07684-3","DOIUrl":null,"url":null,"abstract":"<div><p>Tire wear particles (TWP), generated by the friction of vehicle tires against the road surface during driving, accelerating, and braking, are transferred to aquatic ecosystems via rainfall runoff. These particles exhibit toxicological effects on aquatic organisms and have become the focus of research in environment and health. Microalgae, as primary producers in the marine food web, play a crucial role in aquatic ecosystems and are inevitably affected by TWP. However, the toxic mechanisms by which TWP influences microalgae's normal physiological activities remain unclear. Given this, <i>Microcystis aeruginosa</i>, a common species in freshwater ecosystems, was selected as an experimental species in this study to investigate the effects of different concentrations of TWP (5, 25, 50, 100 mg/L) on its growth, chlorophyll a content, photosynthetic activity, extracellular polymer secretion (EPS), and oxidative stress. The results showed that TWP had a concentration-dependent inhibitory effect on the growth, chlorophyll content, and photosynthetic activity of <i>Microcystis aeruginosa</i>, with maximum inhibition rates reaching 89.4%, 98.44% and 92.9%, respectively. TWP stimulated the secretion of the EPS of <i>Microcystis aeruginosa</i>, and the secretion of the EPS increased with the increase of the concentration of TWP. TWP also promoted the polysaccharide-to-protein ratio in the EPS with a rise of 27.3–38.5%. Meanwhile, the three-dimensional fluorescence-area-integral analysis indicated that the ratio of the protein-like component was generally higher than the one of the humic-like component in the EPS of <i>Microcystis aeruginosa</i>. The significant increase in superoxide dismutase (SOD) activity under 50 and 100 mg/L TWP exposure predicted a substantial activation of oxidative stress. In contrast, the significant increase in the malondialdehyde (MDA) content indicated the overproduction of reactive oxygen species (ROS) and may lead to lipid peroxidation damage. These findings will help us better understand the toxic mechanisms by which TWP induces effects in microalgae.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07684-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tire wear particles (TWP), generated by the friction of vehicle tires against the road surface during driving, accelerating, and braking, are transferred to aquatic ecosystems via rainfall runoff. These particles exhibit toxicological effects on aquatic organisms and have become the focus of research in environment and health. Microalgae, as primary producers in the marine food web, play a crucial role in aquatic ecosystems and are inevitably affected by TWP. However, the toxic mechanisms by which TWP influences microalgae's normal physiological activities remain unclear. Given this, Microcystis aeruginosa, a common species in freshwater ecosystems, was selected as an experimental species in this study to investigate the effects of different concentrations of TWP (5, 25, 50, 100 mg/L) on its growth, chlorophyll a content, photosynthetic activity, extracellular polymer secretion (EPS), and oxidative stress. The results showed that TWP had a concentration-dependent inhibitory effect on the growth, chlorophyll content, and photosynthetic activity of Microcystis aeruginosa, with maximum inhibition rates reaching 89.4%, 98.44% and 92.9%, respectively. TWP stimulated the secretion of the EPS of Microcystis aeruginosa, and the secretion of the EPS increased with the increase of the concentration of TWP. TWP also promoted the polysaccharide-to-protein ratio in the EPS with a rise of 27.3–38.5%. Meanwhile, the three-dimensional fluorescence-area-integral analysis indicated that the ratio of the protein-like component was generally higher than the one of the humic-like component in the EPS of Microcystis aeruginosa. The significant increase in superoxide dismutase (SOD) activity under 50 and 100 mg/L TWP exposure predicted a substantial activation of oxidative stress. In contrast, the significant increase in the malondialdehyde (MDA) content indicated the overproduction of reactive oxygen species (ROS) and may lead to lipid peroxidation damage. These findings will help us better understand the toxic mechanisms by which TWP induces effects in microalgae.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轮胎磨损颗粒对铜绿微囊藻的毒性作用
轮胎磨损颗粒(TWP)是由车辆轮胎在行驶、加速和制动过程中与路面摩擦产生的,通过降雨径流转移到水生生态系统中。这些颗粒对水生生物具有毒性作用,已成为环境和健康领域的研究热点。微藻作为海洋食物网的初级生产者,在水生生态系统中起着至关重要的作用,不可避免地受到TWP的影响。然而,TWP影响微藻正常生理活动的毒性机制尚不清楚。鉴于此,本研究选择淡水生态系统中常见的物种铜绿微囊藻作为实验物种,研究不同浓度TWP(5、25、50、100 mg/L)对其生长、叶绿素a含量、光合活性、胞外聚合物分泌(EPS)和氧化应激的影响。结果表明,TWP对铜绿微囊藻的生长、叶绿素含量和光合活性均有浓度依赖性的抑制作用,最大抑制率分别为89.4%、98.44%和92.9%。TWP刺激铜绿微囊藻的EPS分泌,且EPS分泌随TWP浓度的增加而增加。TWP对多糖蛋白比也有促进作用,提高了27.3 ~ 38.5%。同时,三维荧光-面积积分分析表明,铜绿微囊藻EPS中蛋白样成分的比例普遍高于腐殖质成分的比例。在50和100 mg/L TWP暴露下,超氧化物歧化酶(SOD)活性显著升高,预示着氧化应激的显著激活。相反,丙二醛(MDA)含量的显著增加表明活性氧(ROS)过量产生,可能导致脂质过氧化损伤。这些发现将有助于我们更好地理解TWP对微藻的毒性机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Strength and Compressibility of HCl Contaminated Clayey Soil Combined Chemical-Biological Method for Efficient Clean Treatment of Oily Sludge Influencing Factors and Spatial Spillover Effects of Pollution in the Yangtze River Delta–Based On a New Measurement Method Persistent Effects of Naturally Aged Polyethylene Terephthalate Microplastics on Physalaemus cuvieri Tadpoles: The Toxic Legacy Beyond Exposure Fresh and Aged Chromite Ore Processing Residues (COPR): Weathering-Induced Alteration of Chemical Properties, Cr(VI) Mobility and Mineralogy At Open Dumpsites in Kanpur, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1