Saturated hydraulic conductivity of uncemented and lightly cemented high-density tailings for surface disposal

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Earth Sciences Pub Date : 2024-12-11 DOI:10.1007/s12665-024-12019-w
Zeinab Faraji, Mamadou Fall
{"title":"Saturated hydraulic conductivity of uncemented and lightly cemented high-density tailings for surface disposal","authors":"Zeinab Faraji,&nbsp;Mamadou Fall","doi":"10.1007/s12665-024-12019-w","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, innovative approaches to tailings management, such as thickened tailings and paste tailings technologies, have emerged as effective disposal techniques for high-density tailings (HDTs). Environmental performance remains a crucial design criterion for HDT structures; however, there is a notable lack of comprehensive data on key performance properties and design parameters for uncemented HDT (UCHDT) and lightly cemented HDT (LCHDT). Many of these characteristics, including leachability and susceptibility to acid mine drainage, significantly influence environmental impact and are closely linked to hydraulic conductivity. In response, this study presents novel experimental insights into the saturated hydraulic conductivity of HDTs, specifically focusing on UCHDT and LCHDT with a Portland Cement content (PCI) ≤ 2%, under various curing conditions and HDT compositions. The findings underscore a time-dependent nature of hydraulic conductivity in HDT (UCHDT, LCHDT), with a discernible decrease observed as curing time progresses. Moreover, the composition of the mix exerts a notable impact on permeability. A reduction in permeability is discernible with higher solid content and binder content, with this decrease being particularly pronounced in the initial stages (≤ 7 days). Additionally, the initial sulfate content present in the pore water of the tailings significantly influences the permeability of LCHDT. Furthermore, under drained curing conditions, a significant decrease in hydraulic conductivity is observed, particularly accentuated in LCHDTs. Moreover, experimental results indicate that the permeability of specimens subjected to rewetting after the first day of curing remains largely unaffected, while for samples rewetted after being cured for 7 days, hydraulic conductivity exhibits a significant increase. Lastly, consolidation is shown to lead to a decrease in hydraulic conductivity, especially notable at early ages (≤ 7 days), as highlighted by the results of this study.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-12019-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, innovative approaches to tailings management, such as thickened tailings and paste tailings technologies, have emerged as effective disposal techniques for high-density tailings (HDTs). Environmental performance remains a crucial design criterion for HDT structures; however, there is a notable lack of comprehensive data on key performance properties and design parameters for uncemented HDT (UCHDT) and lightly cemented HDT (LCHDT). Many of these characteristics, including leachability and susceptibility to acid mine drainage, significantly influence environmental impact and are closely linked to hydraulic conductivity. In response, this study presents novel experimental insights into the saturated hydraulic conductivity of HDTs, specifically focusing on UCHDT and LCHDT with a Portland Cement content (PCI) ≤ 2%, under various curing conditions and HDT compositions. The findings underscore a time-dependent nature of hydraulic conductivity in HDT (UCHDT, LCHDT), with a discernible decrease observed as curing time progresses. Moreover, the composition of the mix exerts a notable impact on permeability. A reduction in permeability is discernible with higher solid content and binder content, with this decrease being particularly pronounced in the initial stages (≤ 7 days). Additionally, the initial sulfate content present in the pore water of the tailings significantly influences the permeability of LCHDT. Furthermore, under drained curing conditions, a significant decrease in hydraulic conductivity is observed, particularly accentuated in LCHDTs. Moreover, experimental results indicate that the permeability of specimens subjected to rewetting after the first day of curing remains largely unaffected, while for samples rewetted after being cured for 7 days, hydraulic conductivity exhibits a significant increase. Lastly, consolidation is shown to lead to a decrease in hydraulic conductivity, especially notable at early ages (≤ 7 days), as highlighted by the results of this study.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地表处置用未胶结和轻度胶结高密度尾矿的饱和水力导率
近几十年来,尾矿管理的创新方法,如加厚尾矿和膏状尾矿技术,已经成为高密度尾矿(HDTs)的有效处置技术。环境性能仍然是HDT结构的重要设计标准;然而,关于未胶结HDT (UCHDT)和轻度胶结HDT (LCHDT)的关键性能和设计参数的综合数据明显缺乏。其中许多特征,包括可浸性和对酸性矿井排水的敏感性,对环境影响有重大影响,并与水力导电性密切相关。因此,本研究对HDT的饱和水导率提出了新的实验见解,特别关注波特兰水泥含量(PCI)≤2%的UCHDT和LCHDT,在不同的养护条件和HDT成分下。研究结果强调了HDT (UCHDT, LCHDT)中导电性的时间依赖性,随着固化时间的延长,导电性明显降低。此外,混合料的组成对渗透率有显著影响。随着固体含量和粘结剂含量的增加,渗透率的降低是明显的,这种降低在初始阶段(≤7天)尤为明显。此外,尾矿孔隙水中硫酸盐的初始含量对LCHDT的渗透性有显著影响。此外,在排水固化条件下,观察到水力导电性显著降低,特别是在低密度混凝土中。此外,试验结果表明,在养护第一天后进行再润湿处理的试件的渗透率基本不受影响,而在养护第7天后进行再润湿处理的试件,其水力导电性有显著提高。最后,正如本研究的结果所强调的那样,固结会导致水力导电性的降低,尤其是在早期(≤7天)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
期刊最新文献
Correction: Initial moisture effects on THMC processes in cement-stabilized marine clay Magnetic susceptibility as an indicator of heavy metal contamination in urban soils: insights from Yinchuan City, Northwest China Remote sensing-based assessment of albedo changes on benchmark glaciers in the Western Himalaya, India, between 2001 and 2022 using Google Earth Engine: implications for glacier mass loss Study on the mechanism and prevention of seismicity caused by fracture of Extra-thick strata at high positions Contrasting sedimentary nitrogen isotope responses to atmospheric nitrogen deposition in Northern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1