{"title":"A Unified Method for the Mobility Prediction of an Inelastic Non-Newtonian Fluid Through Complex Porous Media","authors":"Hye Kyeong Jang, Youngseok Oh, Wook Ryol Hwang","doi":"10.1007/s11242-024-02145-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose a novel method to quantify flows of inelastic non-Newtonian fluids in porous media based on the energy dissipation rate. Unlike the permeability of a Newtonian fluid with Darcy’s law, the permeability of a non-Newtonian fluid shows complicated behaviors due to non-separable effects of the geometry and rheology. We suggest a simple energy dissipation-based flow characterization method to resolve this problem, employing the concepts of effective viscosity and effective shear rate. These effective quantities can be defined with two flow numbers (the energy dissipation rate coefficient and the effective shear rate coefficient) independent of fluid rheology. New expressions for the permeability of Newtonian and mobility of non-Newtonian fluids were derived for model porous media in this approach. We show that the mobility (a ratio of permeability to viscosity) of a non-Newtonian fluid for a given porous media can be factored into the permeability of Newtonian fluid and the effective viscosity, exactly the same as in case of a Newtonian fluid. The proposed quantification method was validated through example problems of flows using numerical simulations (1) in two-dimensional (2D) transverse fibrous porous media (quadratic and hexagonal), (2) flows in three-dimensional (3D) regularly packed beds with spheres (faced-centered cubic and body-centered cubic), and (3) finally randomly distributed unidirectional fibers in 2D. The suggested method can quantitatively assess tortuous path in porous electrode for electrolyte transport and in the secondary oil recovery, offering the potential to optimize performance and efficiency in these applications.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-024-02145-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a novel method to quantify flows of inelastic non-Newtonian fluids in porous media based on the energy dissipation rate. Unlike the permeability of a Newtonian fluid with Darcy’s law, the permeability of a non-Newtonian fluid shows complicated behaviors due to non-separable effects of the geometry and rheology. We suggest a simple energy dissipation-based flow characterization method to resolve this problem, employing the concepts of effective viscosity and effective shear rate. These effective quantities can be defined with two flow numbers (the energy dissipation rate coefficient and the effective shear rate coefficient) independent of fluid rheology. New expressions for the permeability of Newtonian and mobility of non-Newtonian fluids were derived for model porous media in this approach. We show that the mobility (a ratio of permeability to viscosity) of a non-Newtonian fluid for a given porous media can be factored into the permeability of Newtonian fluid and the effective viscosity, exactly the same as in case of a Newtonian fluid. The proposed quantification method was validated through example problems of flows using numerical simulations (1) in two-dimensional (2D) transverse fibrous porous media (quadratic and hexagonal), (2) flows in three-dimensional (3D) regularly packed beds with spheres (faced-centered cubic and body-centered cubic), and (3) finally randomly distributed unidirectional fibers in 2D. The suggested method can quantitatively assess tortuous path in porous electrode for electrolyte transport and in the secondary oil recovery, offering the potential to optimize performance and efficiency in these applications.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).