Ly Mai Thi Nguyen, Thuy Thu Truong, Hau Cong Le, Minh Duy Hoang, Ha Tran Nguyen, Le-Thu T. Nguyen
{"title":"Self-healing bismaleimide resin via “click” reactions: impact of structure on healing efficiency","authors":"Ly Mai Thi Nguyen, Thuy Thu Truong, Hau Cong Le, Minh Duy Hoang, Ha Tran Nguyen, Le-Thu T. Nguyen","doi":"10.1007/s10965-024-04224-9","DOIUrl":null,"url":null,"abstract":"<div><p>Aromatic bismaleimide (BMI)-based copolymers composed of alternating BMI and bis(sulfanediylethoxy)ethylene units of short and long lengths are synthesized and crosslinked via the reversible Diels–Alder reaction, resulting in thermoreversible amorphous networks with different structures and hence properties. The structure of BMI-based copolymers was confirmed by <sup>1</sup>H nuclear magnetic resonance (NMR) spectroscopy, and the occurrence of the DA reaction forming networks was followed using Fourier transform infrared (FT-IR) analysis. A comparison of the properties of the networks was obtained vis differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and wide-angle powder X-ray diffraction (XRD), optical microscopy, field-emission scanning electron microscopy (FE-SEM) and tensile measurements. Owing to higher mobility of the network structure derived from the long copolymer precursor, the corresponding network exhibits a lower glass transition and much better healing ability of scratches and cuts than for the short precursor-derived one. Efficient healing of complete cut, with strength and ultimate strain recoveries of 80% and 73%, respectively, are achieved for the long precursor-derived material.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04224-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Aromatic bismaleimide (BMI)-based copolymers composed of alternating BMI and bis(sulfanediylethoxy)ethylene units of short and long lengths are synthesized and crosslinked via the reversible Diels–Alder reaction, resulting in thermoreversible amorphous networks with different structures and hence properties. The structure of BMI-based copolymers was confirmed by 1H nuclear magnetic resonance (NMR) spectroscopy, and the occurrence of the DA reaction forming networks was followed using Fourier transform infrared (FT-IR) analysis. A comparison of the properties of the networks was obtained vis differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and wide-angle powder X-ray diffraction (XRD), optical microscopy, field-emission scanning electron microscopy (FE-SEM) and tensile measurements. Owing to higher mobility of the network structure derived from the long copolymer precursor, the corresponding network exhibits a lower glass transition and much better healing ability of scratches and cuts than for the short precursor-derived one. Efficient healing of complete cut, with strength and ultimate strain recoveries of 80% and 73%, respectively, are achieved for the long precursor-derived material.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.