Pyrolysis-derived activated carbon from Colombian cashew (Anacardium occidentale) nut shell for valorization in phenol adsorption

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-12-09 DOI:10.1007/s10450-024-00574-4
Luis J. Cruz-Reina, Óscar Javier Fonseca-Bermúdez, Juan Sebastián Flórez-Rojas, Jader Rodríguez-Cortina, Liliana Giraldo, Juan Carlos Moreno-Piraján, Israel Herrera-Orozco, Chiara Carazzone, Rocío Sierra
{"title":"Pyrolysis-derived activated carbon from Colombian cashew (Anacardium occidentale) nut shell for valorization in phenol adsorption","authors":"Luis J. Cruz-Reina,&nbsp;Óscar Javier Fonseca-Bermúdez,&nbsp;Juan Sebastián Flórez-Rojas,&nbsp;Jader Rodríguez-Cortina,&nbsp;Liliana Giraldo,&nbsp;Juan Carlos Moreno-Piraján,&nbsp;Israel Herrera-Orozco,&nbsp;Chiara Carazzone,&nbsp;Rocío Sierra","doi":"10.1007/s10450-024-00574-4","DOIUrl":null,"url":null,"abstract":"<div><p>The cashew nut shell is an agricultural residue generated in the production of cashew nuts. This residue is a hard-management biomass that can be efficiently transformed using pyrolysis, into a biochar. Conversely, potable water security requires the development of efficient adsorbents using novel and renewable materials. Then, in this work, a pyrolysis-derived carbon was chemically activated with KOH to remove phenol from an aqueous solution at 200 ppm that could represent health risk for life. The activated carbon was characterized rigorously, whereas adsorption kinetics and adsorption isotherms were evaluated to determine the suitability of this material to remove phenol. The activated carbon presented a chemical composition of 64.4 wt%; 33.2 wt%, and 1.98 wt% of carbon, oxygen, and hydrogen, respectively. Also, it presented a surface adsorption area of 863 m<sup>2</sup>/g, with a pore volume of 0.476 cm<sup>3</sup>/g. The surface chemistry presented -OH groups and the morphology revealed an organized material with the occurrence of porosity. The pseudo-second-order adequately described the kinetics of adsorption (80.93 mg/g and 0.0044 g/mg min, for equilibrium concentration (q<sub>e</sub>), and adsorption rate constant (k<sub>PSO</sub>), respectively). Additionally, the Toth isotherm model described reasonably the adsorption mechanism suggesting that a monolayer chemisorption that is independent of concentration of phenol took place for activated carbon. The efficiency of phenol uptake in the present work was about 79%, indicating that activated carbon derived from cashew nut shells has the potential for water remediation.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00574-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The cashew nut shell is an agricultural residue generated in the production of cashew nuts. This residue is a hard-management biomass that can be efficiently transformed using pyrolysis, into a biochar. Conversely, potable water security requires the development of efficient adsorbents using novel and renewable materials. Then, in this work, a pyrolysis-derived carbon was chemically activated with KOH to remove phenol from an aqueous solution at 200 ppm that could represent health risk for life. The activated carbon was characterized rigorously, whereas adsorption kinetics and adsorption isotherms were evaluated to determine the suitability of this material to remove phenol. The activated carbon presented a chemical composition of 64.4 wt%; 33.2 wt%, and 1.98 wt% of carbon, oxygen, and hydrogen, respectively. Also, it presented a surface adsorption area of 863 m2/g, with a pore volume of 0.476 cm3/g. The surface chemistry presented -OH groups and the morphology revealed an organized material with the occurrence of porosity. The pseudo-second-order adequately described the kinetics of adsorption (80.93 mg/g and 0.0044 g/mg min, for equilibrium concentration (qe), and adsorption rate constant (kPSO), respectively). Additionally, the Toth isotherm model described reasonably the adsorption mechanism suggesting that a monolayer chemisorption that is independent of concentration of phenol took place for activated carbon. The efficiency of phenol uptake in the present work was about 79%, indicating that activated carbon derived from cashew nut shells has the potential for water remediation.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哥伦比亚腰果壳热解衍生活性炭在苯酚吸附中的应用
腰果壳是腰果生产过程中产生的农业残余物。这种残留物是一种难以管理的生物质,可以通过热解有效地转化为生物炭。相反,饮用水安全需要使用新型和可再生材料开发有效的吸附剂。然后,在这项工作中,用KOH对热解衍生的碳进行化学活化,以从浓度为200 ppm的水溶液中去除可能对生命构成健康风险的苯酚。对活性炭进行了严格的表征,并对吸附动力学和吸附等温线进行了评估,以确定该材料去除苯酚的适宜性。活性炭的化学成分为64.4 wt%;碳、氧和氢的重量分别为33.2%和1.98%。表面吸附面积为863 m2/g,孔体积为0.476 cm3/g。表面化学表现为-OH基团,形貌表现为有组织的材料,并伴有孔隙。拟二阶方程充分描述了吸附动力学(平衡浓度(qe)为80.93 mg/g,吸附速率常数(kPSO)为0.0044 g/mg min)。此外,Toth等温线模型合理地描述了活性炭的吸附机理,表明活性炭发生了不依赖于苯酚浓度的单层化学吸附。腰果壳活性炭对苯酚的吸附效率约为79%,表明腰果壳活性炭具有水体修复的潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Investigation on the possibility of using the C2N semiconductor segment for adsorption and detection of some chlorofluorocarbons; a DFT survey DFT study of the adsorption behaviors of glycine, hystidine and phenylalanine amino acids on the novel Ag4 cluster modified BSe nanosheets: applications to bionanosensors Efficient calculation of the equilibrium composition in multicomponent batch adsorption with the steric mass action model Adsorption-biased characterization of porous solids Metal-loaded porous materials made from gold tailings: preparation and application in pollutants adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1