{"title":"Integrated geological study in an offshore renewable energy test site: a case from the Basque continental shelf (Bay of Biscay, Spain)","authors":"Iván Asensio, Lidia Rodríguez-Méndez, Néstor Vegas, Aitor Aranguren","doi":"10.1007/s12665-024-12009-y","DOIUrl":null,"url":null,"abstract":"<div><p>Testing and research centres for offshore renewable energy, exemplified by facilities like BIMEP (Biscay Marine Energy Platform) on the Basque coast of Spain, play a crucial role in driving the energy transition. This study utilises pre-existing data at the facility site, such as high-resolution bathymetry and granulometric information from sediment samples, to conduct a comprehensive geological analysis including both sedimentary and rocky seabed. A litho-structural analysis is presented, including a lithological prediction for the continental shelf, the recognition of the main structures, such as NW-trending folds and predominantly NE-SW oriented fractures, and a detailed fracture analysis. Sedimentary seabeds are analysed through a Seabed Sediment Map, illustrating a granulometry-based NE-SW oriented banded distribution. Bedforms are also studied, they are asymmetric and mainly oriented NE-SW. The Seabed Sediment Map and the bedform analysis reveal the effect of an SE-directed bottom current as the main mechanism controlling sediment mobility. This current matches with the predominant swell from the NW and with the direction of the most energetic waves in the area. This approach could serve as a methodological example, offering a cost-effective means for the preliminary geological characterisation of offshore energy sites, and is crucial for establishing a baseline (‘zero state’) before the deployment. This baseline is essential for evaluating and mitigating the impact of new infrastructure on sediment dynamics, which subsequently affects the overall functioning and health of the marine ecosystem.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12665-024-12009-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-12009-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Testing and research centres for offshore renewable energy, exemplified by facilities like BIMEP (Biscay Marine Energy Platform) on the Basque coast of Spain, play a crucial role in driving the energy transition. This study utilises pre-existing data at the facility site, such as high-resolution bathymetry and granulometric information from sediment samples, to conduct a comprehensive geological analysis including both sedimentary and rocky seabed. A litho-structural analysis is presented, including a lithological prediction for the continental shelf, the recognition of the main structures, such as NW-trending folds and predominantly NE-SW oriented fractures, and a detailed fracture analysis. Sedimentary seabeds are analysed through a Seabed Sediment Map, illustrating a granulometry-based NE-SW oriented banded distribution. Bedforms are also studied, they are asymmetric and mainly oriented NE-SW. The Seabed Sediment Map and the bedform analysis reveal the effect of an SE-directed bottom current as the main mechanism controlling sediment mobility. This current matches with the predominant swell from the NW and with the direction of the most energetic waves in the area. This approach could serve as a methodological example, offering a cost-effective means for the preliminary geological characterisation of offshore energy sites, and is crucial for establishing a baseline (‘zero state’) before the deployment. This baseline is essential for evaluating and mitigating the impact of new infrastructure on sediment dynamics, which subsequently affects the overall functioning and health of the marine ecosystem.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.