A gravity-driven microfluidic metering system for automation of multiplexed bioassays.

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2024-12-10 DOI:10.1039/d4lc00800f
Lu Zhang, Johnson Q Cui, Shuhuai Yao
{"title":"A gravity-driven microfluidic metering system for automation of multiplexed bioassays.","authors":"Lu Zhang, Johnson Q Cui, Shuhuai Yao","doi":"10.1039/d4lc00800f","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic and precise fluid manipulation is essential in microfluidic applications. Microfluidic metering, in particular, plays a critical role in achieving the multiplexity of assays, reaction consistency, quantitative analysis, and the scalability of microfluidic operations. However, existing fluid metering techniques often face limitations, such as high complexity, high cost, reliance on external accessories, and lack of precision, which have restricted their use in multiplexed and quantitative analysis, especially in portable applications. In this study, we present a novel portable gravity-driven metering system designed for automated multiplexed fluid metering, multistep fluid control, and multi-chamber signal readout. Our metering chip utilizes gravitational force to dispense sample liquids, allowing for versatile and precise metering. Guided by a series of numerical simulations, we optimized the design of our metering chip to achieve rapid and accurate liquid metering. Furthermore, thermal control valves were employed to facilitate automated and programmable fluid transfer, eliminating the need for external equipment. To enhance user experience, we developed a smartphone-assisted readout pod for seamless integration with the metering chip. We validated the efficacy of our platform through a proof-of-concept multiplexed analysis of urinary biomarkers, demonstrating high sensitivity, specificity, and absolute quantification capabilities. Our gravity-driven metering system shows significant potential for applications in multiplexed diagnostics, drug screening, and material synthesis, effectively addressing critical needs in fluid manipulation and analysis.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00800f","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic and precise fluid manipulation is essential in microfluidic applications. Microfluidic metering, in particular, plays a critical role in achieving the multiplexity of assays, reaction consistency, quantitative analysis, and the scalability of microfluidic operations. However, existing fluid metering techniques often face limitations, such as high complexity, high cost, reliance on external accessories, and lack of precision, which have restricted their use in multiplexed and quantitative analysis, especially in portable applications. In this study, we present a novel portable gravity-driven metering system designed for automated multiplexed fluid metering, multistep fluid control, and multi-chamber signal readout. Our metering chip utilizes gravitational force to dispense sample liquids, allowing for versatile and precise metering. Guided by a series of numerical simulations, we optimized the design of our metering chip to achieve rapid and accurate liquid metering. Furthermore, thermal control valves were employed to facilitate automated and programmable fluid transfer, eliminating the need for external equipment. To enhance user experience, we developed a smartphone-assisted readout pod for seamless integration with the metering chip. We validated the efficacy of our platform through a proof-of-concept multiplexed analysis of urinary biomarkers, demonstrating high sensitivity, specificity, and absolute quantification capabilities. Our gravity-driven metering system shows significant potential for applications in multiplexed diagnostics, drug screening, and material synthesis, effectively addressing critical needs in fluid manipulation and analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
A gravity-driven microfluidic metering system for automation of multiplexed bioassays. Advancing cellular transfer printing: achieving bioadhesion-free deposition via vibration microstreaming. Correction: Distal renal tubular system-on-a-chip for studying the pathogenesis of influenza A virus-induced kidney injury. Rapid automated production of tubular 3D intestine-on-a-chip with diverse cell types using coaxial bioprinting. An integrated microfluidic device for sorting of tumor organoids using image recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1