Hassan Omar, Shayan Ahmadi, Paulina Szymoniak, Andreas Schönhals
{"title":"Molecular mobility of thin films of poly(bisphenol-A carbonate) capped and with one free surface: from bulk-like samples down to the adsorbed layer.","authors":"Hassan Omar, Shayan Ahmadi, Paulina Szymoniak, Andreas Schönhals","doi":"10.1039/d4sm01238k","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular mobility of thin films of poly(bisphenol A carbonate) (PBAC) was systematically investigated using broadband dielectric spectroscopy, employing two distinct electrode configurations. First, films were prepared in a capped geometry between aluminum electrodes employing a crossed electrode capacitor (CEC) configuration, down to film thicknesses of 40 nm. The Vogel temperature, derived from the temperature dependence of relaxation rates of the α-relaxation, increases with decreasing film thickness characterized by an onset thickness. The onset thickness depends on the annealing conditions, with less intense annealing yielding a lower onset thickness. Additionally, a broadening of the β-relaxation peak was observed with decreasing thickness, attributed to the interaction of phenyl groups with thermally evaporated aluminum, resulting in a shift of certain relaxation modes to higher temperatures relative to the bulk material. A novel phenomenon, termed the slow Arrhenius process (SAP), was also identified in proximity to the α-relaxation temperature. For films with thicknesses below 40 nm, nanostructured electrodes (NSE) were utilized, incorporating nanostructured silica spacers to establish a free surface with air. This free surface causes an enhancement in the molecular mobility for the 40 nm sample, preserving the β-relaxation as a distinct peak. The α-relaxation was detectable in the dielectric loss down to 18 nm, shifting to higher temperatures as film thickness is decreased. Notably, the onset thickness for the increase in Vogel temperature was lower in the NSE configuration compared to the CEC setup, attributed to the presence of the polymer-air interface.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01238k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular mobility of thin films of poly(bisphenol A carbonate) (PBAC) was systematically investigated using broadband dielectric spectroscopy, employing two distinct electrode configurations. First, films were prepared in a capped geometry between aluminum electrodes employing a crossed electrode capacitor (CEC) configuration, down to film thicknesses of 40 nm. The Vogel temperature, derived from the temperature dependence of relaxation rates of the α-relaxation, increases with decreasing film thickness characterized by an onset thickness. The onset thickness depends on the annealing conditions, with less intense annealing yielding a lower onset thickness. Additionally, a broadening of the β-relaxation peak was observed with decreasing thickness, attributed to the interaction of phenyl groups with thermally evaporated aluminum, resulting in a shift of certain relaxation modes to higher temperatures relative to the bulk material. A novel phenomenon, termed the slow Arrhenius process (SAP), was also identified in proximity to the α-relaxation temperature. For films with thicknesses below 40 nm, nanostructured electrodes (NSE) were utilized, incorporating nanostructured silica spacers to establish a free surface with air. This free surface causes an enhancement in the molecular mobility for the 40 nm sample, preserving the β-relaxation as a distinct peak. The α-relaxation was detectable in the dielectric loss down to 18 nm, shifting to higher temperatures as film thickness is decreased. Notably, the onset thickness for the increase in Vogel temperature was lower in the NSE configuration compared to the CEC setup, attributed to the presence of the polymer-air interface.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.