{"title":"A novel anti-epileptogenesis strategy of temporal lobe epilepsy based on nitric oxide donor.","authors":"Xian-Hui Zhu, Ya-Ping Zhou, Qiao Zhang, Ming-Yi Zhu, Xiao-Wei Song, Jun Li, Jiang Chen, Yun Shi, Kang-Jian Sun, Yong-Jie Zhang, Jing Zhang, Tian Xia, Bao-Sheng Huang, Fan Meng, Qi-Gang Zhou","doi":"10.1038/s44321-024-00168-1","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular mechanism underlying the role of hippocampal hilar interneuron degeneration in temporal lobe epilepsy (TLE) remains unclear. Especially, very few studies have focused on the role of neuronal nitric oxide synthase (nNOS, encoded by Nos1) containing hilar interneurons in TLE. In the present study, Nos1 conditional knockout mice were constructed, and we found that selective deletion of Nos1 in hilar interneurons rather than dentate granular cells (DGCs) triggered epileptogenesis. The level of nNOS was downregulated in patients and mice with TLE. Nos1 deletion led to excessive epilepsy-like excitatory input circuit formation and hyperexcitation of DGCs. Replenishment of hilar nNOS protein blocked epileptogenic development and memory impairment in pilocarpine-induced TLE mice. Moreover, chronic treatment with DETA/NONOate, a slowly released exogenous nitric oxide (NO) donor, prevented aberrant neural circuits of DGCs and the consequent epileptogenesis without acute antiseizure effects. Therefore, we concluded that NO donor therapy may be a novel anti-epileptogenesis strategy, different from existing antiseizure medications (ASMs), for curing TLE.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"85-111"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00168-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular mechanism underlying the role of hippocampal hilar interneuron degeneration in temporal lobe epilepsy (TLE) remains unclear. Especially, very few studies have focused on the role of neuronal nitric oxide synthase (nNOS, encoded by Nos1) containing hilar interneurons in TLE. In the present study, Nos1 conditional knockout mice were constructed, and we found that selective deletion of Nos1 in hilar interneurons rather than dentate granular cells (DGCs) triggered epileptogenesis. The level of nNOS was downregulated in patients and mice with TLE. Nos1 deletion led to excessive epilepsy-like excitatory input circuit formation and hyperexcitation of DGCs. Replenishment of hilar nNOS protein blocked epileptogenic development and memory impairment in pilocarpine-induced TLE mice. Moreover, chronic treatment with DETA/NONOate, a slowly released exogenous nitric oxide (NO) donor, prevented aberrant neural circuits of DGCs and the consequent epileptogenesis without acute antiseizure effects. Therefore, we concluded that NO donor therapy may be a novel anti-epileptogenesis strategy, different from existing antiseizure medications (ASMs), for curing TLE.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)