The impact of mild episodic ketosis on microglia and hippocampal long-term depression in 5xFAD mice.

IF 2.5 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY FASEB bioAdvances Pub Date : 2024-10-23 eCollection Date: 2024-12-01 DOI:10.1096/fba.2024-00123
Jacopo Di Lucente, Jon J Ramsey, Lee-Way Jin, Izumi Maezawa
{"title":"The impact of mild episodic ketosis on microglia and hippocampal long-term depression in 5xFAD mice.","authors":"Jacopo Di Lucente, Jon J Ramsey, Lee-Way Jin, Izumi Maezawa","doi":"10.1096/fba.2024-00123","DOIUrl":null,"url":null,"abstract":"<p><p>Ketotherapeutics is a potential metabolic intervention for mitigating dementias; however, its mechanisms and optimal methods of application are not well understood. Our previous in vitro study showed that β-hydroxybutyrate (BHB), a major ketone body, reverses pathological features of amyloid-β oligomer (AβO)-activated microglia. Here we tested the in vivo effects of BHB on microglia and synaptic plasticity in the 5xFAD Alzheimer's disease (AD) mouse model. A short 1-week regimen of daily intraperitoneal injection of BHB (250 mg/kg), which induced brief and mild daily episodic ketosis, was sufficient to mitigate pro-inflammatory microglia activation and reduce brain amyloid-β deposition by enhancing phagocytosis. Remarkably, it mitigated the deficits of hippocampal long-term depression but not long-term potentiation, and this effect was linked to suppression of NLRP3 inflammasome-generated IL-1β. As ketogenic diets are known for poor compliance, our study opens the possibility for alternative approaches such as short-term BHB injections or dietary ketone esters that are less restrictive, potentially safer, and easier for compliance.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 12","pages":"581-596"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1096/fba.2024-00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ketotherapeutics is a potential metabolic intervention for mitigating dementias; however, its mechanisms and optimal methods of application are not well understood. Our previous in vitro study showed that β-hydroxybutyrate (BHB), a major ketone body, reverses pathological features of amyloid-β oligomer (AβO)-activated microglia. Here we tested the in vivo effects of BHB on microglia and synaptic plasticity in the 5xFAD Alzheimer's disease (AD) mouse model. A short 1-week regimen of daily intraperitoneal injection of BHB (250 mg/kg), which induced brief and mild daily episodic ketosis, was sufficient to mitigate pro-inflammatory microglia activation and reduce brain amyloid-β deposition by enhancing phagocytosis. Remarkably, it mitigated the deficits of hippocampal long-term depression but not long-term potentiation, and this effect was linked to suppression of NLRP3 inflammasome-generated IL-1β. As ketogenic diets are known for poor compliance, our study opens the possibility for alternative approaches such as short-term BHB injections or dietary ketone esters that are less restrictive, potentially safer, and easier for compliance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
FASEB bioAdvances
FASEB bioAdvances Multiple-
CiteScore
5.40
自引率
3.70%
发文量
56
审稿时长
10 weeks
期刊最新文献
Issue Information The impact of mild episodic ketosis on microglia and hippocampal long-term depression in 5xFAD mice. CREB coactivator CRTC1 in melanocortin-4 receptor-expressing cells regulate dietary fat intake. Medium-chain fatty acid receptor GPR84 deficiency leads to metabolic homeostasis dysfunction in mice fed high-fat diet TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1