Jacopo Di Lucente, Jon J Ramsey, Lee-Way Jin, Izumi Maezawa
{"title":"The impact of mild episodic ketosis on microglia and hippocampal long-term depression in 5xFAD mice.","authors":"Jacopo Di Lucente, Jon J Ramsey, Lee-Way Jin, Izumi Maezawa","doi":"10.1096/fba.2024-00123","DOIUrl":null,"url":null,"abstract":"<p><p>Ketotherapeutics is a potential metabolic intervention for mitigating dementias; however, its mechanisms and optimal methods of application are not well understood. Our previous in vitro study showed that β-hydroxybutyrate (BHB), a major ketone body, reverses pathological features of amyloid-β oligomer (AβO)-activated microglia. Here we tested the in vivo effects of BHB on microglia and synaptic plasticity in the 5xFAD Alzheimer's disease (AD) mouse model. A short 1-week regimen of daily intraperitoneal injection of BHB (250 mg/kg), which induced brief and mild daily episodic ketosis, was sufficient to mitigate pro-inflammatory microglia activation and reduce brain amyloid-β deposition by enhancing phagocytosis. Remarkably, it mitigated the deficits of hippocampal long-term depression but not long-term potentiation, and this effect was linked to suppression of NLRP3 inflammasome-generated IL-1β. As ketogenic diets are known for poor compliance, our study opens the possibility for alternative approaches such as short-term BHB injections or dietary ketone esters that are less restrictive, potentially safer, and easier for compliance.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 12","pages":"581-596"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618890/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1096/fba.2024-00123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ketotherapeutics is a potential metabolic intervention for mitigating dementias; however, its mechanisms and optimal methods of application are not well understood. Our previous in vitro study showed that β-hydroxybutyrate (BHB), a major ketone body, reverses pathological features of amyloid-β oligomer (AβO)-activated microglia. Here we tested the in vivo effects of BHB on microglia and synaptic plasticity in the 5xFAD Alzheimer's disease (AD) mouse model. A short 1-week regimen of daily intraperitoneal injection of BHB (250 mg/kg), which induced brief and mild daily episodic ketosis, was sufficient to mitigate pro-inflammatory microglia activation and reduce brain amyloid-β deposition by enhancing phagocytosis. Remarkably, it mitigated the deficits of hippocampal long-term depression but not long-term potentiation, and this effect was linked to suppression of NLRP3 inflammasome-generated IL-1β. As ketogenic diets are known for poor compliance, our study opens the possibility for alternative approaches such as short-term BHB injections or dietary ketone esters that are less restrictive, potentially safer, and easier for compliance.