Alicja Naczk, Katarzyna Kisiel-Sajewicz, Ewa Gajewska, Piotr Gramza, Tomasz Jędzrzejczak, Mariusz Naczk
{"title":"Is inertial training more effective than traditional resistance training in young healthy males?","authors":"Alicja Naczk, Katarzyna Kisiel-Sajewicz, Ewa Gajewska, Piotr Gramza, Tomasz Jędzrzejczak, Mariusz Naczk","doi":"10.3389/fphys.2024.1487624","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Inertial training, also called flywheel training is more and more popular among sportsmen. The available data concerning the effectiveness of inertial training compared to conventional resistance strength training are contradictory. The aim of this study was to compare the impact of inertial training (IT) vs. traditional gravity-dependent resistance training (TRT) on elbow flexor and knee extensor strength.</p><p><strong>Methods: </strong>Twenty-six young, recreationally active males were randomized into IT group (n = 13) or TRT group (n = 13). Both groups performed strength training three times a week for 6 weeks. Before and after training, the maximum force of the trained muscles was evaluated under training conditions (one repetition maximum under gravity-dependent conditions and maximal force under inertial conditions) and isometric conditions. Countermovement jump, squat jump, pull-up test, and limb circumference were also evaluated.</p><p><strong>Results: </strong>Elbow flexor muscle strength and arm circumference increased significantly in both IT and TRT over the course of training. There were no significant differences in relative muscle strength increases between groups. Knee extensor muscle strength also improved significantly in IT, regardless of the tested conditions, while TRT showed significant changes in one repetition maximum and isometric force but no significant changes in force obtained under inertial conditions. Thigh circumference increased in IT (P ≤ 0.05) but was unchanged in TRT. Jumping abilities improved significantly in both groups, without any differences between groups.</p><p><strong>Conclusion: </strong>We cannot confirm the superiority of inertial training over traditional resistance training definitively. Nevertheless, inertial training had a slight advantage over traditional resistance training when knee extensor muscle training was considered.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1487624"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625812/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1487624","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Inertial training, also called flywheel training is more and more popular among sportsmen. The available data concerning the effectiveness of inertial training compared to conventional resistance strength training are contradictory. The aim of this study was to compare the impact of inertial training (IT) vs. traditional gravity-dependent resistance training (TRT) on elbow flexor and knee extensor strength.
Methods: Twenty-six young, recreationally active males were randomized into IT group (n = 13) or TRT group (n = 13). Both groups performed strength training three times a week for 6 weeks. Before and after training, the maximum force of the trained muscles was evaluated under training conditions (one repetition maximum under gravity-dependent conditions and maximal force under inertial conditions) and isometric conditions. Countermovement jump, squat jump, pull-up test, and limb circumference were also evaluated.
Results: Elbow flexor muscle strength and arm circumference increased significantly in both IT and TRT over the course of training. There were no significant differences in relative muscle strength increases between groups. Knee extensor muscle strength also improved significantly in IT, regardless of the tested conditions, while TRT showed significant changes in one repetition maximum and isometric force but no significant changes in force obtained under inertial conditions. Thigh circumference increased in IT (P ≤ 0.05) but was unchanged in TRT. Jumping abilities improved significantly in both groups, without any differences between groups.
Conclusion: We cannot confirm the superiority of inertial training over traditional resistance training definitively. Nevertheless, inertial training had a slight advantage over traditional resistance training when knee extensor muscle training was considered.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.