Prooxidant state in anticancer drugs and prospect use of mitochondrial cofactors and anti-inflammatory agents in cancer prevention.

IF 4.6 2区 医学 Q2 IMMUNOLOGY Inflammopharmacology Pub Date : 2025-02-01 Epub Date: 2024-12-10 DOI:10.1007/s10787-024-01613-w
Giovanni Pagano, Alex Lyakhovich, Philippe J Thomas, Federico V Pallardó Catalayud, Luca Tiano, Adriana Zatterale, Marco Trifuoggi
{"title":"Prooxidant state in anticancer drugs and prospect use of mitochondrial cofactors and anti-inflammatory agents in cancer prevention.","authors":"Giovanni Pagano, Alex Lyakhovich, Philippe J Thomas, Federico V Pallardó Catalayud, Luca Tiano, Adriana Zatterale, Marco Trifuoggi","doi":"10.1007/s10787-024-01613-w","DOIUrl":null,"url":null,"abstract":"<p><p>An extensive body of literature has associated cancer with redox imbalance and inflammatory conditions. Thus, several studies and current clinical practice have relied on the use of anticancer drugs known to be associated with prooxidant state. On the other hand, a number of studies have reported on the effects of several antioxidants, anti-inflammatory agents and of mitochondrial cofactors (also termed mitochondrial nutrients, MNs) in counteracting or slowing carcinogenesis, or in controlling cancer growth. In the available literature, a body of evidence points on the roles of anti-inflammatory agents and of individual MNs against carcinogenesis or in controlling cancer cell proliferation, but only a few reports on the combined use of two or the effect of three MNs. These combinations are proposed as potentially successful tools to counteract carcinogenesis in prospective animal model studies or in adjuvant cancer treatment strategies. A \"triad\" of MNs are suggested to restore redox balance, mitigate side effects of prooxidative anticancer drugs, or aid in cancer prevention and/or adjuvant therapy. By elucidating their mechanistic underpinnings and appraising their clinical efficacy, we aim to contribute with a comprehensive understanding of these therapeutic modalities.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"431-441"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01613-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An extensive body of literature has associated cancer with redox imbalance and inflammatory conditions. Thus, several studies and current clinical practice have relied on the use of anticancer drugs known to be associated with prooxidant state. On the other hand, a number of studies have reported on the effects of several antioxidants, anti-inflammatory agents and of mitochondrial cofactors (also termed mitochondrial nutrients, MNs) in counteracting or slowing carcinogenesis, or in controlling cancer growth. In the available literature, a body of evidence points on the roles of anti-inflammatory agents and of individual MNs against carcinogenesis or in controlling cancer cell proliferation, but only a few reports on the combined use of two or the effect of three MNs. These combinations are proposed as potentially successful tools to counteract carcinogenesis in prospective animal model studies or in adjuvant cancer treatment strategies. A "triad" of MNs are suggested to restore redox balance, mitigate side effects of prooxidative anticancer drugs, or aid in cancer prevention and/or adjuvant therapy. By elucidating their mechanistic underpinnings and appraising their clinical efficacy, we aim to contribute with a comprehensive understanding of these therapeutic modalities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗肿瘤药物中的促氧化状态及线粒体辅助因子和抗炎剂在癌症预防中的应用前景。
大量文献将癌症与氧化还原失衡和炎症状况联系起来。因此,一些研究和目前的临床实践依赖于使用已知与促氧化状态相关的抗癌药物。另一方面,一些研究报告了几种抗氧化剂、抗炎剂和线粒体辅助因子(也称为线粒体营养素,MNs)在抵消或减缓致癌作用或控制癌症生长方面的作用。在现有文献中,有大量证据表明抗炎剂和单个MNs抗致癌或控制癌细胞增殖的作用,但只有少数报道联合使用两种或三种MNs的效果。在前瞻性动物模型研究或辅助癌症治疗策略中,这些组合被提议作为潜在的成功工具来对抗致癌作用。MNs的“三联体”被认为可以恢复氧化还原平衡,减轻抗氧化药物的副作用,或有助于癌症预防和/或辅助治疗。通过阐明其机制基础和评估其临床疗效,我们的目标是对这些治疗方式有一个全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
期刊最新文献
Exploring the anti-anaphylaxis potential of natural products: A Review. Modulation of the cognitive impairment associated with Alzheimer's disease by valproic acid: possible drug repurposing. The association between anti-inflammatory therapies and renal outcomes in patients with established cardiovascular disease or high cardiovascular risks: a meta-analysis of randomised controlled trials. Multifaceted therapeutic potentials of catalpol, an iridoid glycoside: an updated comprehensive review. Therapeutic effect of formononetin in 6-OHDA induced Parkinson disease in rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1